Flink最后一站___Flink数据写入Kafka+从Kafka存入Mysql

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
简介: Flink最后一站___Flink数据写入Kafka+从Kafka存入Mysql

前言

大家好,我是ChinaManor,直译过来就是中国码农的意思,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。

今天为大家带来Flink的一个综合应用案例:Flink数据写入Kafka+从Kafka存入Mysql

第一部分:写数据到kafka

public static void writeToKafka() throws Exception{
        Properties props = new Properties();
        props.put("bootstrap.servers", BROKER_LIST);
        props.put("key.serializer", CONST_SERIALIZER);
        props.put("value.serializer", CONST_SERIALIZER);
        KafkaProducer<String, String> producer = new KafkaProducer<>(props);
        //构建User对象,在name为data后边加个随机数
        int randomInt = RandomUtils.nextInt(1, 100000);
        User user = new User();
        user.setName("data" + randomInt);
        user.setId(randomInt);
        //转换成JSON
        String userJson = JSON.toJSONString(user);
        //包装成kafka发送的记录
        ProducerRecord<String, String> record = new ProducerRecord<String, String>(TOPIC_USER, partition,
                null, userJson);
        //发送到缓存
        producer.send(record);
        System.out.println("向kafka发送数据:" + userJson);
        //立即发送
        producer.flush();
    }

重点:

//发送到缓存
        producer.send(record);

为了增强代码的Robust,我们将常量单独拎出来:

//本地的kafka机器列表
    public static final String BROKER_LIST = "192.168.88.161:9092";
    //kafka的topic
    public static final String TOPIC_USER = "USER";
    //kafka的partition分区
    public static final Integer partition = 0;
    //序列化的方式
    public static final String CONST_SERIALIZER = "org.apache.kafka.common.serialization.StringSerializer";
    //反序列化
    public static final String CONST_DESERIALIZER = "org.apache.kafka.common.serialization.StringDeserializer";

main方法如下:

public static void main(String[] args) {
        while(true) {
            try {
                //每三秒写一条数据
                TimeUnit.SECONDS.sleep(3);
                writeToKafka();
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

第二部分:从kafka获取数据

KafkaRickSourceFunction.java

import com.hy.flinktest.entity.User;
import lombok.extern.slf4j.Slf4j;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import java.io.IOException;
import java.time.Duration;
import java.util.Collections;
import java.util.List;
import java.util.Properties;
@Slf4j
public class KafkaRickSourceFunction extends RichSourceFunction<String>{
    //kafka
    private static Properties prop = new Properties();
    private boolean running = true;
  //作静态化处理,增强robust
    private static Integer partition = WritedatatoKafka.partition;
    static {
        prop.put("bootstrap.servers",WritedatatoKafka.BROKER_LIST);
        prop.put("zookeeper.connect","192.168.88.161:2181");
        prop.put("group.id",WritedatatoKafka.TOPIC_USER);
        prop.put("key.deserializer",WritedatatoKafka.CONST_DESERIALIZER);
        prop.put("value.deserializer",WritedatatoKafka.CONST_DESERIALIZER);
        prop.put("auto.offset.reset","latest");
        prop.put("max.poll.records", "500");
        prop.put("auto.commit.interval.ms", "1000");
    }
    @Override
    public void run(SourceContext sourceContext) throws Exception {
        //创建一个消费者客户端实例
        KafkaConsumer<String,String> kafkaConsumer = new KafkaConsumer<String, String>(prop);
        //只消费TOPIC_USER 分区
        TopicPartition topicPartition = new TopicPartition(WritedatatoKafka.TOPIC_USER,partition);
        long offset =0; //这个初始值应该从zk或其他地方获取
        offset = placeOffsetToBestPosition(kafkaConsumer, offset, topicPartition);
        while (running){
            ConsumerRecords<String, String> records = kafkaConsumer.poll(1000);
            if(records.isEmpty()){
                continue;
            }
            for (ConsumerRecord<String, String> record : records) {
                //record.offset();
                //record.key()
                String value = record.value();
                sourceContext.collect(value);
            }
        }
    }

然后 返回最合适的offset

/**
     * 将offset定位到最合适的位置,并返回最合适的offset。
     * @param kafkaConsumer consumer
     * @param offset offset
     * @param topicPartition partition
     * @return the best offset
     */
    private long placeOffsetToBestPosition(
            KafkaConsumer<String, String> kafkaConsumer,
            long offset, TopicPartition topicPartition) {
        List<TopicPartition> partitions = Collections.singletonList(topicPartition);
        kafkaConsumer.assign(partitions);
        long bestOffset = offset;
        if (offset == 0) {
            log.info("由于offset为0,重新定位offset到kafka起始位置.");
            kafkaConsumer.seekToBeginning(partitions);
        } else if (offset > 0) {
            kafkaConsumer.seekToBeginning(partitions);
            long startPosition = kafkaConsumer.position(topicPartition);
            kafkaConsumer.seekToEnd(partitions);
            long endPosition = kafkaConsumer.position(topicPartition);
            if (offset < startPosition) {
                log.info("由于当前offset({})比kafka的最小offset({})还要小,则定位到kafka的最小offset({})处。",
                        offset, startPosition, startPosition);
                kafkaConsumer.seekToBeginning(partitions);
                bestOffset = startPosition;
            } else if (offset > endPosition) {
                log.info("由于当前offset({})比kafka的最大offset({})还要大,则定位到kafka的最大offset({})处。",
                        offset, endPosition, endPosition);
                kafkaConsumer.seekToEnd(partitions);
                bestOffset = endPosition;
            } else {
                kafkaConsumer.seek(topicPartition, offset);
            }
        }
        return bestOffset;
    }
    @Override
    public void cancel() {
        running = false;
    }
}

第三部分

主类:从kafka读取数据写入mysql

//1.构建流执行环境 并添加数据源
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<String> dataStreamSource = env.addSource(new KafkaRickSourceFunction());
//2.从kafka里读取数据,转换成User对象
DataStream<User> dataStream = dataStreamSource.map(lines -> JSONObject.parseObject(lines, User.class));
//3.收集5秒钟的总数
dataStream.timeWindowAll(Time.seconds(5L)).
        apply(new AllWindowFunction<User, List<User>, TimeWindow>() {
            @Override
            public void apply(TimeWindow timeWindow, Iterable<User> iterable, Collector<List<User>> out) throws Exception {
                List<User> users = Lists.newArrayList(iterable);
                if(users.size() > 0) {
                    System.out.println("5秒内总共收到的条数:" + users.size());
                    out.collect(users);
                }
            }
        })
        //sink 到数据库
                .addSink(new MysqlRichSinkFunction());
        //打印到控制台
        //.print();

第四部分:

写入到目标数据库sink

MysqlRichSinkFunction.java

@Slf4j
public class MysqlRichSinkFunction extends RichSinkFunction<List<User>> {
    private Connection connection = null;
    private PreparedStatement ps = null;
    @Override
    public void open(Configuration parameters) throws Exception {
       // super.open(parameters);
        log.info("获取数据库连接");
        connection = DbUtil.getConnection();
        String sql = "insert into user1(id,name) values (?,?)";
        ps = connection.prepareStatement(sql);
    }
    public void invoke(List<User> users, Context ctx) throws Exception {
        //获取ReadMysqlResoure发送过来的结果
        for(User user : users) {
            ps.setLong(1, user.getId());
            ps.setString(2, user.getName());
            ps.addBatch();
        }
        //一次性写入
        int[] count = ps.executeBatch();
        log.info("成功写入Mysql数量:" + count.length);
    }
    @Override
    public void close() throws Exception {
        //关闭并释放资源
        if(connection != null) {
            connection.close();
        }
        if(ps != null) {
            ps.close();
        }
    }
}

总结

以上便是Flink数据写入Kafka+从Kafka存入Mysql

如果有帮助,给manor一键三连吧~~


目录
相关文章
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
153 0
|
2月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
|
2月前
|
消息中间件 NoSQL Kafka
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
Flink-10 Flink Java 3分钟上手 Docker容器化部署 JobManager TaskManager Kafka Redis Dockerfile docker-compose
48 4
|
2月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
146 0
|
2月前
|
消息中间件 资源调度 大数据
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
大数据-112 Flink DataStreamAPI 程序输入源 DataSource 基于文件、集合、Kafka连接器
43 0
|
17天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
32 1
|
19天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
33 4
|
2月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
64 3
Mysql(4)—数据库索引
|
26天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
141 1
|
28天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
83 2