学了1年大数据,来测测你大数据技术掌握程度?大数据综合复习之面试题15问(思维导图+问答库)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 学了1年大数据,来测测你大数据技术掌握程度?大数据综合复习之面试题15问(思维导图+问答库)

前言

大家好,我是ChinaManor,直译过来是中国码农的意思,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。

时隔一年,终于把主流的大数据组件全部学完了,学成之时,便是出师之日,

那为师便来考考你学的如何:

问题1:Rowkey如何设计,设计规则是什么?

  • 业务原则:贴合业务,保证前缀是最常用的查询字段
  • 唯一原则:每条rowkey唯一表示一条数据
  • 组合原则:常用的查询条件组合作为Rowkey
  • 散列原则:rowkey构建不能连续
  • 长度原则:满足业务需求越短越好

口诀:月尾煮散肠

又到了月尾业务达不到,唯一不挨饿的办法是煮超市散落的香肠吃。

问题2:请简述Hbase写入数据的流程

  • step1:获取元数据
  • 客户端请求Zookeeper,获取meta表所在的regionserver的地址
  • 读取meta表的数据:获取所有表的元数据
  • step2:找到对应的Region
  • 根据meta表中的元数据,找到表对应的所有的region
  • 根据region的范围和写入的Rowkey,判断需要写入具体哪一个Region
  • 根据region的Regionserver的地址,请求对应的RegionServer
  • step3:写入数据
  • 请求RegionServer写入对应Region:根据Region的名称来指定写入哪个Region
  • 根据列族判断写入哪一个具体的Store
  • 先写入WAL:Hlog预写日志中
  • 写入对应Store的MemStore中

问题3:协处理器是什么?Hbase中提供了几种协处理器?

  • 协处理器指的是Hbase提供了一些开发接口,可以自定义开发一些功能集成到Hbase中
  • 类似于Hive中的UDF
  • 协处理器分为两类
  • Observer:观察者类,类似于监听器的实现
  • Endpoint:终端者类,类似于存储过程的实现

以上面试题出自之前发布的Hbase专栏

Hbase专栏链接

问题4:为什么Kafka读写会很快?

  • 写很快
  • 应用了PageCache的页缓存机制
  • 顺序写磁盘的机制
  • 读很快
  • 优先基于PageCache内存的读取,使用零拷贝机制
  • 按照Offset有序读取每一条
  • 构建Segment文件段
  • 构建index索引

问题5:请简述Kafka生产数据时如何保证生产数据不丢失?

  • acks机制:当接收方收到数据以后,就会返回一个确认的ack消息
  • 生产者向Kafka生产数据,根据配置要求Kafka返回ACK
  • ack=0:生产者不管Kafka有没有收到,直接发送下一条
  • 优点:快
  • 缺点:容易导致数据丢失,概率比较高
  • ack=1:生产者将数据发送给Kafka,Kafka等待这个分区leader副本写入成功,返回ack确认,生产者发送下一条
  • 优点:性能和安全上做了平衡
  • 缺点:依旧存在数据丢失的概率,但是概率比较小
  • ack=all/-1:生产者将数据发送给Kafka,Kafka等待这个分区所有副本全部写入,返回ack确认,生产者发送下一条
  • 优点:数据安全
  • 缺点:慢
  • 如果使用ack=all,可以搭配min.insync.replicas参数一起使用,可以提高效率
  • min.insync.replicas:表示最少同步几个副本以后,就返回ack
  • 如果生产者没有收到ack,就使用重试机制,重新发送上一条消息,直到收到ack

问题6:Kafka中生产者的数据分区规则是什么,如何自定义分区规则?

  • 如果指定了分区:就写入指定的分区
  • 如果没有指定分区,就判断是否指定了Key
  • 如果指定了Key:根据Key的Hash取余分区
  • 如果没有指定Key:根据黏性分区来实现
  • 自定义分区
  • 开发一个类实现Partitioner接口
  • 实现partition方法
  • 在生产者中指定分区器的配置

以上面试题出自之前发布的Kafka专栏

Kafka专栏链接

问题7:简述Spark on yarn的作业提交流程(YARN Cluster模式)

1、任务提交后会和ResourceManager通讯申请启动ApplicationMaster

2、随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster就是Driver。

3、Driver启动后向ResourceManager申请Executor内存

4、ResourceManager接到ApplicationMaster的资源申请后会分配container,然后在合适的NodeManager上启动Executor进程

5、Executor进程启动后会向Driver反向注册

6、Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

问题8:简述Spark on yarn的作业提交流程(YARN Client模式)

1、Driver在任务提交的本地机器上运行,Driver启动后会和ResourceManager通讯申请启动ApplicationMaster

2、随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster

3、此时的ApplicationMaster的功能相当于一个ExecutorLaucher,只负责向ResourceManager申请Executor内存

4、ResourceManager接到ApplicationMaster的资源申请后会分配container,ApplicationMaster在资源分配指定的NodeManager上启动Executor进程

5、Executor进程启动后会向Driver反向注册

6、Executor全部注册完成后Driver开始执行main函数,之后执行到Action算子时,触发一个job,并根据宽依赖开始划分stage,每个stage生成对应的taskSet,之后将task分发到各个Executor上执行。

问题9:Repartition和Coalesce关系与区别

1)关系:

两者都是用来改变RDD的partition数量的,repartition底层调用的就是coalesce方法

2)区别:

repartition一定会发生shuffle,coalesce根据传入的参数来判断是否发生shuffle

一般情况下增大rdd的partition数量使用repartition,减少partition数量时使用coalesce

问题10:cache和pesist的区别?

cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省 程序运行时间

1) cache只有一个默认的缓存级别MEMORY_ONLY ,cache调用了persist,而persist可以根据情况设置其它的缓存级别;

2) executor执行的时候,默认60%做cache,40%做task操作,persist是最根本的函数,最底层的函数。

以上面试题出自之前发布的Spark专栏

Spark专栏链接

问题11:flink中的水印机制?

1、首先什么是Watermaker?

Watermaker就是给数据再额外的加的一个时间列,也就是Watermaker是个时间戳!

2、其次如何计算Watermaker?

Watermaker = 当前窗口的最大的事件时间 - 最大允许的延迟时间或乱序时间

3、窗口计算的触发条件为:

  • 1.窗口中有数据
  • 2.Watermaker >= 窗口的结束时间

问题12:Flink的四大基石都有什么?

Checkpoint、State、Time、Window

问题13:Flink的重启策略有哪些?

固定延迟重启策略

失败率重启策略

回调重启策略

无重启策略

古诗会晤

固定的古诗会晤即将在沭阳举行

问题14:请描述一下flink的双流join

Flink Join大体分类只有两种:Window Join和Interval Join。

  • Window Join又可以根据Window的类型细分出3种:

Tumbling Window Join、

Sliding Window Join、

Session Widnow Join

Windows类型的join都是利用window的机制,先将数据缓存在Window State中,当窗口触发计算时,执行join操作。

  • interval join也是利用state存储数据再处理,区别在于state中的数据有失效机制。

问题15:flink on yarn执行任务的两种方式

第一种yarn seesion(Start a long-running Flink cluster on YARN)

这种方式需要先启动集群,然后在提交作业,接着会向yarn申请一块空间后,资源保持不变。

如果资源满了,下一个作业就无法提交,只能等到yarn中的其中一个作业执行完成后,释放了资源,那下一个作业才会正常提交.

比较适合特定的运行环境或者测试环境。

第二种Flink run直接在YARN上提交运行Flink作业(Run a Flink job on YARN),

一个任务会对应一个job,即每提交一个作业会根据自身的情况,向yarn申请资源,直到作业执行完成,

并不会影响下一个作业的正常运行,除非是yarn上面没有任何资源的情况下。

一般生产环境是采用此种方式运行

以上面试题出自之前发布的Flink专栏

Flink专栏链接

问答库已制作完成

问答库

总结

以上便是大数据综合复习之面试题15问,你都掌握了吗?
    ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20210709105801106.png)

愿你读过之后有自己的收获,如果有收获不妨一键三连,我们下期再见👋·


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
23天前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
110 4
|
3月前
|
Java 测试技术 微服务
最新技术栈下 Java 面试高频技术点实操指南详解
本指南结合最新Java技术趋势,涵盖微服务(Spring Cloud Alibaba)、响应式编程(Spring WebFlux)、容器化部署(Docker+Kubernetes)、函数式编程、性能优化及测试等核心领域。通过具体实现步骤与示例代码,深入讲解服务注册发现、配置中心、熔断限流、响应式数据库访问、JVM调优等内容。适合备战Java面试,提升实操能力,助力技术进阶。资源链接:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)
155 25
|
2月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
2月前
|
缓存 Java API
Java 面试实操指南与最新技术结合的实战攻略
本指南涵盖Java 17+新特性、Spring Boot 3微服务、响应式编程、容器化部署与数据缓存实操,结合代码案例解析高频面试技术点,助你掌握最新Java技术栈,提升实战能力,轻松应对Java中高级岗位面试。
305 0
|
29天前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
2月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
2月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
2月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
3月前
|
Cloud Native Java 程序员
【2025 最新版互联网一线大厂 Java 程序员面试 + 学习指南】覆盖全面面试知识点、实用面试技巧及前沿技术实操内容
本内容涵盖互联网大厂主流技术栈的最新实操指南,包括微服务架构(Spring Cloud Alibaba Nacos、OpenFeign、Spring Cloud Gateway)、容器化与Kubernetes、云原生技术(Istio、Prometheus+Grafana)、高性能开发(Reactor响应式编程、CompletableFuture异步编程)及数据持久化(Redis分布式锁、ShardingSphere分库分表)。通过详细代码示例和操作步骤,帮助开发者掌握核心技术,适用于本地环境搭建与模块功能实践。适合Java程序员学习和面试准备,附带资源链接供深入研究。
97 5
|
6月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
278 79