Matplotlib数据可视化(六)

简介: Matplotlib数据可视化(六)

1.绘制概率图

from scipy.stats import norm
fig,ax = plt.subplots()
plt.rcParams['font.family'] = ['SimHei'] 
np.random.seed()
mu = 100
sigma = 15
x = mu+sigma*np.random.randn(437)
num_bins = 50
n,bins,patches = ax.hist(x,num_bins,density = 1,color='c')
y=norm.pdf(bins,mu,sigma)
ax.plot(bins,y,'r--')
fig.tight_layout()
plt.show()

结果图:

2.绘制雷达图

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
# 某学生的课程与成绩
courses = ['数据结构', '数据可视化', '高数', '英语', '软件工程', '组成原理', 'C语言', '体育']
scores = [82, 95, 78, 85, 45, 88, 76, 88]
dataLength = len(scores)               # 数据长度
# angles数组把圆周等分为dataLength份
angles = np.linspace(0, 2*np.pi, dataLength, endpoint=False)  
courses.append(courses[0])
scores.append(scores[0])
angles = np.append(angles,angles[0])  # 闭合
# 绘制雷达图
plt.polar(angles,              # 设置角度
          scores,            # 设置各角度上的数据
          'bv--',             # 设置颜色、线型和端点符号
          linewidth=2)       # 设置线宽
# 设置角度网格标签
plt.thetagrids(angles*180/np.pi, courses, fontproperties='simhei', fontsize=12)
# 填充雷达图内部
plt.fill(angles, scores, facecolor='g', alpha=0.2)
plt.show()

结果图:

3.绘制流向图

import numpy as np
import matplotlib.pyplot as plt
Y, X = np.mgrid[-3:3:100j, -3:3:100j]
U = -1 - X**2 + Y
V = 1 + X - Y**2
speed = np.sqrt(U*U + V*V)
plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)
plt.colorbar()
f, (ax1, ax2) = plt.subplots(ncols=2)
ax1.streamplot(X, Y, U, V, density=[0.5, 1])
lw = 5*speed/speed.max()
ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw)
plt.show()

结果图:

4.绘制极坐标图

r = np.linspace(0, 2, 100)
theta = 2 * np.pi * r
fig = plt.figure(figsize=(13, 4))
ax1 = plt.subplot(121, projection='polar')
ax1.scatter(theta, r, label = 'Polar Projection', s = 10)
ax1.legend(bbox_to_anchor = (0.85, 1.35))
ax2 = plt.subplot(122)
ax2.scatter(theta, r, label = 'Planar Projection', s = 5)
ax2.legend(bbox_to_anchor = (0.85, 1.35))
ax2.set_xlabel('R')
ax2.set_ylabel(r'$\theta$')

结果图:

5.绘制词云图

import matplotlib.pyplot as plt
from wordcloud import WordCloud,STOPWORDS
# from pyecharts.charts import WordCloud
import PIL.Image as image
import numpy as np
def get_wordList():
    f = open("data//text.txt")
    wordList = f.read()
    return wordList
def get_wordClound(mylist):
    pic_path = 'data//myimg.jpg'
    img_mask = np.array(image.open(pic_path))
    wordcloud = WordCloud(background_color="white",mask=img_mask).generate(mylist)
    plt.imshow(wordcloud)
    plt.axis("off")
wordList = get_wordList()
get_wordClound(wordList)

结果图:

 

目录
打赏
0
0
0
0
57
分享
相关文章
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
62 1
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
152 3
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
65 17
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
36 4
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
57 2
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
49 4
Python中数据可视化的魔法——使用Matplotlib和Pandas
【9月更文挑战第5天】在Python的世界里,数据可视化是连接复杂数据与人类直觉的桥梁。本篇文章将带领读者探索如何使用Matplotlib和Pandas这两个强大的库来揭示数据背后的故事。我们将从基础概念开始,逐步深入到高级技巧,让每一位读者都能轻松创建引人入胜的数据可视化图表,使数据分析变得既直观又有趣。
104 14
AI助理

阿里云 AI 助理已上线!

快来体验一下吧。