matplotlib-散点图

简介: matplotlib-散点图

日期:2024.03.14

内容:将matplotlib的常用方法做一个记录,方便后续查找。

# 引入需要使用的库
from matplotlib import pyplot as plt

# 设置画布大小 
plt.figure(figsize=(20,8),dpi = 300)

# 全局设置中文字体
plt.rcParams['font.sans-serif'] = ['Simhei']

# 准备的数据
y_3 = [11,17 ,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

# 绘制折线图
x_3 = range(1,32)
x_10 = range(51,82)

# 绘制点分布
plt.scatter(x_3,y_3,label = "三月份")
plt.scatter(x_10,y_10,label = "十月份")

# 添加描述信息
plt.title("三月和十月的月气温变化情况")
plt.xlabel("时间")
plt.ylabel("温度")

# 横纵坐标
x_tick = list(x_3) + list(x_10)
x_labels = [f"3月{i}日" for i in x_3]
x_labels += [f"10月{i}日" for i in x_3]

plt.xticks(x_tick[::5],x_labels[::5],rotation = 45,fontsize = 8)

# 展示图例 :要想图例展示出来这个必不可少
# loc='upper left'
plt.legend()

# 展示点分布
plt.show()

相关文章
|
12月前
|
数据可视化 Python
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
187 0
|
4天前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 1
通过设置参数如点的大小(`s`)、颜色(`c`)和样式(`marker`)等,可以定制图表外观。示例展示了如何用两个长度相同的数组分别表示 x 和 y 轴的值来创建基本散点图。
27 12
|
2天前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 散点图 7
使用 Matplotlib 的 `scatter()` 方法绘制散点图。该方法接受多个参数,如 x 和 y 数据点、点的大小(s)、颜色(c)和样式(marker)等。通过示例展示了如何利用颜色数组和颜色映射 (`cmap`) 来增强图表的表现力,并使用 `colorbar()` 方法添加颜色条,使数据可视化更加直观。
10 1
|
1天前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 散点图 9
使用Matplotlib中的`scatter()`方法绘制散点图。该方法接受多个参数,如数据点位置(x,y)、点的大小(s)、颜色(c)等,并支持多种颜色样式和配置选项。通过调整这些参数,用户可以自定义散点图的外观和表现形式,实现丰富的可视化效果。
8 0
|
3天前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 4
使用 Matplotlib 的 `scatter()` 方法绘制散点图。通过设置 `x` 和 `y` 数组来定义数据点位置,还可以自定义点的大小(`s`)、颜色(`c`)、样式(`marker`)等参数。示例展示了两组不同颜色的散点图,分别使用 `hotpink` 和 `#88c999` 颜色绘制。
12 0
|
2月前
|
Python
Matplotlib.pyplot.scatter 散点图绘制
Matplotlib.pyplot.scatter 散点图绘制
28 0
|
4月前
|
Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
|
4月前
|
数据可视化 开发者 Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
|
11月前
|
数据挖掘 Python
【Python】数据分析:matplotlib散点图
【Python】数据分析:matplotlib散点图
68 0
|
5月前
|
数据可视化 数据挖掘 Python
Matplotlib图表类型详解:折线图、柱状图与散点图
【4月更文挑战第17天】本文介绍了Python数据可视化库Matplotlib的三种主要图表类型:折线图、柱状图和散点图。折线图用于显示数据随时间或连续变量的变化趋势,适合多条曲线对比;柱状图适用于展示分类数据的数值大小和比较;散点图则用于揭示两个变量之间的关系和模式。通过示例代码展示了如何使用Matplotlib创建这些图表。