Python数据可视化--Matplotlib--入门

简介: Python数据可视化--Matplotlib--入门

Matplotlib介绍

1. Matplotlib 是 Python 中常用的 2D 绘图库,它能轻松地将数据进行可视化,作出精美的图表。


2. Matplotlib 这个模块很庞大,最常用的是其中一个子模块——pyplot 。


import matplotlib.pyplot as plt

pyplot模块

1. pyplot 中最基础的作图方式是以点作图,即给出每个点的坐标,pyplot 会将这些点在坐标系中画出,并用线将这些点连起来。

import numpy as np
import matplotlib.pyplot as plt
 
x=np.arange(0,2*np.pi,0.1) 
# 生成一个从 0 到 2π 的数组,步长是 0.1。
y=np.sin(x) 
# numpy 中计算正弦函数的方法,我们将 x 的值传进去就得到对应的正弦值。
plt.plot(x,y) 
#有了 x 和 y 的值之后,将其分别传入 plt.plot() 方法,pyplot 会将其转换成对应的坐标。
plt.show()
# 将这些坐标连成线就得到了函数的图像,最后调用 plt.show() 方法就能将图像显示出来了。

2. 其实对于每一对 x 和 y,还有一个可选的格式化参数,用来指定线条的颜色、点标记和线条的类型。

import numpy as np
import matplotlib.pyplot as plt
# 设置字体为黑体,防止报错
plt.rcParams['font.family'] = ['SimHei']
# 生成对应数组
x = np.arange(0, 2 * np.pi, 0.1)
y1 = np.sin(x)
y2 = np.cos(x)
# 生成对应函数
plt.plot(x, y1, 'ro--')  # 正弦函数图像
plt.plot(x, y2, 'b*-.')  # 余弦函数图像
# 等价于 plt.plot(x, y1, 'ro--', x, y2, 'b*-.')
plt.show()

呈现图分类

1. 按照数据展示的目标可以把它们分为五种,分别是:趋势、比较、构成、分布和联系。


2. 趋势:这是最常见的一种时间序列关系,关心数据如何随着时间变化,趋势类里的图表能直观反映出每年、每月、每天的变化趋势,增长、减少、上下波动还是基本不变。最常见的是折线图,它能很好地表现指标随时间呈现的趋势。


3. 构成:主要关注每个部分占整体的比例。展示构成关系的图表类型里,最常见的就是饼壮图。


4. 比较:可以展示某个维度上的排列顺序,分析某维度之间的对比是差不多,还是 “大于”、“小于”,


5. 分布:当你关心数据集中、频率、分布时,比如根据地理位置数据,通过地图来展示不同分布特征。比较常用的图表有地图、直方图、散点图。


6. 联系:主要查看两个变量之间是否表达出我们预期所要证明的相关关系。


绘制折线图

1. plt.rcParams['font.family'] = ['SimHei'],再绘图之前先把字体设置成黑体,防止报错。


2. 加图例很简单,只要在调用 plt.plot() 方法时传入 lable 参数,接着用 plt.legend() 方法显示图例即可。

import matplotlib.pyplot as plt
 
x = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
y1 = [61, 42, 52, 72, 86, 91, 73]
y2 = [23, 26, 67, 38, 46, 55, 33]
# 修改字体
plt.rcParams['font.family'] = ['SimHei']
# 传入 label 参数
plt.plot(x, y1, label='商品 A')
plt.plot(x, y2, label='商品 B')
# 显示图例
plt.legend()
# 绘制图片
plt.show()


1. 如果想自行选择图例位置的话可以通过 plt.legend() 方法的 loc 参数实现。


2. 我们还可以通过 plt.xlable() 和 plt.ylable() 方法来设置 x 轴和 y 轴的标签.


3. 还能通过 plt.title() 给图表设置标题。


plt.legend(loc='lower right')
# 设置 x 轴标签
plt.xlabel('时间')
# 设置 y 轴标签
plt.ylabel('销量')
# 设置图表标题
plt.title('商品销量对比图')

绘制柱状图

普通柱状图

1. 调用 plt.bar() 方法即可,我们需要传入两个参数。


2. 第一个参数是 x 轴上刻度的标签序列。


3. 第二个参数则用于指定每个柱子的高度,也就是具体的数据。


4.  plt.bar() 还有一些可选参数,常用的有 width 和 color,分别用于设置柱子的宽度和颜色。

import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
names = ['篮球', '羽毛球', '乒乓球']
nums = [26, 20, 19]
plt.bar(names, nums, width=0.6, color='skyblue')
plt.show()

堆叠柱状图

1. 堆叠柱状图不仅可以展示每一个分类的总量,还能展示该分类包含的每个小分类的大小及占比,因此非常适合处理部分与整体的关系。


2. 多调用了一次 plt.bar() 方法,并传入了 bottom 参数。每调用一次 plt.bar() 方法就会画出对应的柱状图,而 bottom  参数作用就是控制柱状图低端的位置。


import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
 
names = ['篮球', '羽毛球', '乒乓球']
nums_boy = [16, 5, 11]
nums_girl = [10, 15, 8]
 
plt.bar(names, nums_boy, width=0.6, color='skyblue', label='男')
plt.bar(names, nums_girl, bottom=nums_boy, width=0.6, color='pink', label='女')
plt.legend()
plt.show()

分组柱状图

1. 分组柱状图经常用于不同组间数据的比较,这些组都包含了相同分类的数据。


2. 首先使用 np.arange(3) 方法创建了一个数组 x,值为 [ 0 1 2 ],并定义了一个变量 width 用于指定柱子的宽度。


3. 在调用 plt.bar() 时,第一个参数不再是刻度上的标签,而是对应的刻度。以 [ 0 1 2 ] 为基准,分别加上和减去柱子的宽度得到 [-0.15 0.85 1.85] 和 [0.15 1.15 2.15],这些刻度将分别作为两组柱子的中点,并且柱子的宽度为 0.3。


4. 因此,我们还要调用 plt.xticks() 方法来将 x 轴上刻度改成对应的标签。该方法的第一个参数是要更改的刻度序列,第二个参数是与之对应的标签序列。

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
x = np.arange(3)
width = 0.3
 
names = ['篮球', '羽毛球', '乒乓球']
nums_boy = [16, 5, 11]
nums_girl = [10, 15, 8]
 
plt.bar(x - width / 2, nums_boy, width=width, color='skyblue', label='男')
plt.bar(x + width / 2, nums_girl, width=width, color='pink', label='女')
plt.xticks(x, names)
plt.legend()
plt.show()

饼图

1. 饼图用于表示不同分类的占比情况,通过弧度大小来对比各种分类。


2. 饼图的画法很简单,只要传入数据和对应的标签给 plt.pie() 方法即可。但为了让饼图更加直观清晰,需要了解一些额外的参数:参数 autopct 则给饼图自动添加百分比显示。


3. 还能通过 explode 参数来让饼图中的某一部分突出显示,来强调某项数据。


4. 默认 explode 参数里的元素都是 0,我们将需要突出显示的部分对应位置的值设大一点,就能将对应的区块抽离出来突出显示。这个数值越大,抽离的效果就越明显。

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = ['SimHei']
 
data = [64745.2, 364835.2, 489700.8]
labels = ['第一产业', '第二产业', '第三产业']
explode = (0.1, 0, 0)
 
plt.pie(data, explode=explode, labels=labels, autopct='%0.1f%%')
plt.show()

致谢

感谢您花时间阅读这篇文章!如果您对本文有任何疑问、建议或是想要分享您的看法,请不要犹豫,在评论区留下您的宝贵意见。每一次互动都是我前进的动力,您的支持是我最大的鼓励。期待与您的交流,让我们共同成长,探索技术世界的无限可能!

相关文章
|
1月前
|
API 数据安全/隐私保护 开发者
Python自定义异常:从入门到实践的轻松指南
在Python开发中,自定义异常能提升错误处理的精准度与代码可维护性。本文通过银行系统、电商库存等实例,详解如何创建和使用自定义异常,涵盖异常基础、进阶技巧、最佳实践与真实场景应用,助你写出更专业、易调试的代码。
75 0
|
1月前
|
IDE 开发工具 数据安全/隐私保护
Python循环嵌套:从入门到实战的完整指南
循环嵌套是Python中处理多维数据和复杂逻辑的重要工具。本文通过实例讲解嵌套循环的基本用法、常见组合、性能优化技巧及实战应用,帮助开发者掌握其核心思想,避免常见错误,并探索替代方案与进阶方向。
84 0
|
3月前
|
Python
Python字符串格式化利器:f-strings入门指南
Python字符串格式化利器:f-strings入门指南
184 80
|
1月前
|
监控 Linux 数据安全/隐私保护
Python实现Word转PDF全攻略:从入门到实战
在数字化办公中,Python实现Word转PDF自动化,可大幅提升处理效率,解决格式兼容问题。本文详解五种主流方案,包括跨平台的docx2pdf、Windows原生的pywin32、服务器部署首选的LibreOffice命令行、企业级的Aspose.Words,以及轻量级的python-docx+pdfkit组合。每种方案均提供核心代码与适用场景,并涵盖中文字体处理、表格优化、批量进度监控等实用技巧,助力高效办公自动化。
298 0
|
2月前
|
数据采集 分布式计算 大数据
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
不会Python,还敢说搞大数据?一文带你入门大数据编程的“硬核”真相
79 1
|
3月前
|
NoSQL MongoDB 开发者
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
202 0
|
数据可视化 Python
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
【100天精通Python】Day62:Python可视化_Matplotlib绘图基础,绘制折线图、散点图、柱状图、直方图和饼图,以及自定义图标外观和功能,示例+代码
522 0
【python】使用matplotlib绘图使刻度线向内
成功使用代码实现matplotlib绘制的图刻度线朝内
【python】使用matplotlib绘图使刻度线向内
|
数据可视化 Python
【100天精通Python】Day65:Python可视化_Matplotlib3D绘图mplot3d,绘制3D散点图、3D线图和3D条形图,示例+代码
【100天精通Python】Day65:Python可视化_Matplotlib3D绘图mplot3d,绘制3D散点图、3D线图和3D条形图,示例+代码
720 0

热门文章

最新文章

推荐镜像

更多