【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)

简介: 【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)

需要源码请点赞关注收藏后评论区留言私信~~~

一、目标检测的概念

目标检测是计算机视觉和数字图像处理的一个热门方向,广泛应用于机器人导航、智能视频监控、工业检测、航空航天等诸多领域,通过计算机视觉减少对人力资本的消耗,具有重要的现实意义。因此,目标检测也就成为了近年来理论和应用的研究热点,它是图像处理和计算机视觉学科的重要分支,也是智能监控系统的核心部分,同时目标检测也是泛身份识别领域的一个基础性的算法,对后续的人脸识别、步态识别、人群计数、实例分割等任务起着至关重要的作用。

目标检测的任务是找出图像中所有感兴趣的目标,并确定它们的位置和类别,由于各类物体有不同的形状,姿态,加上成像时受光照,遮挡等因素的干扰,目标检测一直是计算机视觉领域最严峻的挑战之一

二、目标检测算法评价指标

目标检测需要预测出目标的具体位置以及目标类别,对于一个目标是否检测正确,首先要确定预测类别置信度是否达到阈值,之后确定预测框与实际框的重合度大小是否超过规定阈值,针对重合度的定义,通常采用IoU来代表,IoU是指对目标预测框与实际框之间的交集面积与两个框之间并集面积之比,IoU越大表示预测框与实际框之间重合度越高 检测得越准确

准确率为对于某个预测类别来说,预测正确的框占所有预测框的比例,而召回率为对于某个预测类别来说,预测正确的框占所有真实框的比例,两个指标计算方法如下

                 

其中TP表示正确预测到的正样本数量,FP表示错误预测的正样本数量,FN表示错误预测的负真实样本数量

AP表示平均精准度,简单来说就是对PR曲线上的Precision值求均值,对于PR曲线来说,我们使用积分来进行计算

         

在实际应用中,我们并不直接对该PR曲线进行计算,而是对PR曲线进行平滑处理,即对PR曲线上的每个点,Precision的值取该点右侧最大的Precision的值

深度卷积神经网络目标检测算法性能对比如下

检测框架

mAP

FPS

R-FCN

79.4

7

Faster R-CNN

76.4

5

SSD500

76.8

19

YOLO

63.4

45

YOLO v2

78.6

40

YOLO v3

82.3

39

三、目标检测项目实战

用到的训练集为VOC数据集,效果展示如下

数字代表了检测物体在图片中的相对坐标

分类如下

四、代码

项目结构如下

keras_frcnn文件夹里面存放着实现Faster R-CNN所用的各种类和方法

下面testing文件夹里面放着测试代码

部分代码如下 需要全部代码请点赞关注收藏后评论区私信

from keras.layers import Layer
import keras.backend as K
if K.backend() == 'tensorflow':
    import tensorflow as tf
class RoiPoolingConv(Layer):
    '''ROI pooling layer for 2D inputs.
    See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition,
    K. He, X. Zhang, S. Ren, J. Sun
    # Arguments
        pool_size: int
            Size of pooling region to use. pool_size = 7 will result in a 7x7 region.
        num_rois: number of regions of interest to be used
    # Input shape
        list of two 4D tensors [X_img,X_roi] with shape:
        X_img:
        `(1, channels, rows, cols)` if dim_ordering='th'
        or 4D tensor with shape:
        `(1, rows, cols, channels)` if dim_ordering='tf'.
        X_roi:
        `(1,num_rois,4)` list of rois, with ordering (x,y,w,h)
    # Output shape
        3D tensor with shape:
        `(1, num_rois, channels, pool_size, pool_size)`
    '''
    def __init__(self, pool_size, num_rois, **kwargs):
        self.dim_ordering = K.common.image_dim_ordering()
        assert self.dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.pool_size = pool_size
        self.num_rois = num_rois
        super(RoiPoolingConv, self).__init__(**kwargs)
    def build(self, input_shape):
        if self.dim_ordering == 'th':
            self.nb_channels = input_shape[0][1]
        elif self.dim_ordering == 'tf':
            self.nb_channels = input_shape[0][3]
    def compute_output_shape(self, input_shape):
        if self.dim_ordering == 'th':
            return None, self.num_rois, self.nb_channels, self.pool_size, self.pool_size
        else:
            return None, self.num_rois, self.pool_size, self.pool_size, self.nb_channels
    def call(self, x, mask=None):
        assert(len(x) == 2)
        img = x[0]
        rois = x[1]
        input_shape = K.shape(img)
        outputs = []
        for roi_idx in range(self.num_rois):
            x = rois[0, roi_idx, 0]
            y = rois[0, roi_idx, 1]
            w = rois[0, roi_idx, 2]
            h = rois[0, roi_idx, 3]
            row_length = w / float(self.pool_size)
            col_length = h / float(self.pool_size)
            num_pool_regions = self.pool_size
            #NOTE: the RoiPooling implementation differs between theano and tensorflow due to the lack of a resize op
            # in theano. The theano implementation is much less efficient and leads to long compile times
            if self.dim_ordering == 'th':
                for jy in range(num_pool_regions):
                    for ix in range(num_pool_regions):
                        x1 = x + ix * row_length
                        x2 = x1 + row_length
                        y1 = y + jy * col_length
                        y2 = y1 + col_length
                        x1 = K.cast(x1, 'int32')
                        x2 = K.cast(x2, 'int32')
                        y1 = K.cast(y1, 'int32')
                        y2 = K.cast(y2, 'int32')
                        x2 = x1 + K.maximum(1,x2-x1)
                        y2 = y1 + K.maximum(1,y2-y1)
                        new_shape = [input_shape[0], input_shape[1],
                                     y2 - y1, x2 - x1]
                        x_crop = img[:, :, y1:y2, x1:x2]
                        xm = K.reshape(x_crop, new_shape)
                        pooled_val = K.max(xm, axis=(2, 3))
                        outputs.append(pooled_val)
            elif self.dim_ordering == 'tf':
                x = K.cast(x, 'int32')
                y = K.cast(y, 'int32')
                w = K.cast(w, 'int32')
                h = K.cast(h, 'int32')
                rs = tf.image.resize(img[:, y:y+h, x:x+w, :], (self.pool_size, self.pool_size))
                outputs.append(rs)
        final_output = K.concatenate(outputs, axis=0)
        final_output = K.reshape(final_output, (1, self.num_rois, self.pool_size, self.pool_size, self.nb_channels))
        if self.dim_ordering == 'th':
            final_output = K.permute_dimensions(final_output, (0, 1, 4, 2, 3))
        else:
            final_output = K.permute_dimensions(final_output, (0, 1, 2, 3, 4))
        return final_output
    def get_config(self):
        config = {'pool_size': self.pool_size,
                  'num_rois': self.num_rois}
        base_config = super(RoiPoolingConv, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))

数据生成器代码如下

from __future__ import absolute_import
import numpy as np
import cv2
import random
import copy
from . import data_augment
import threading
import itertools
def union(au, bu, area_intersection):
  area_a = (au[2] - au[0]) * (au[3] - au[1])
  area_b = (bu[2] - bu[0]) * (bu[3] - bu[1])
  area_union = area_a + area_b - area_intersection
  return area_union
def intersection(ai, bi):
  x = max(ai[0], bi[0])
  y = max(ai[1], bi[1])
  w = min(ai[2], bi[2]) - x
  h = min(ai[3], bi[3]) - y
  if w < 0 or h < 0:
    return 0
  return w*h
def iou(a, b):
  # a and b should be (x1,y1,x2,y2)
  if a[0] >= a[2] or a[1] >= a[3] or b[0] >= b[2] or b[1] >= b[3]:
    return 0.0
  area_i = intersection(a, b)
  area_u = union(a, b, area_i)
  return float(area_i) / float(area_u + 1e-6)
def get_new_img_size(width, height, img_min_side=600):
  if width <= height:
    f = float(img_min_side) / width
    resized_height = int(f * height)
    resized_width = img_min_side
  else:
    f = float(img_min_side) / height
    resized_width = int(f * width)
    resized_height = img_min_side
  return resized_width, resized_height
class SampleSelector:
  def __init__(self, class_count):
    # ignore classes that have zero samples
    self.classes = [b for b in class_count.keys() if class_count[b] > 0]
    self.class_cycle = itertools.cycle(self.classes)
    self.curr_class = next(self.class_cycle)
  def skip_sample_for_balanced_class(self, img_data):
    class_in_img = False
    for bbox in img_data['bboxes']:
      cls_name = bbox['class']
      if cls_name == self.curr_class:
        class_in_img = True
        self.curr_class = next(self.class_cycle)
        break
    if class_in_img:
      return False
    else:
      return True
def calc_rpn(C, img_data, width, height, resized_width, resized_height, img_length_calc_function):
  downscale = float(C.rpn_stride)
  anchor_sizes = C.anchor_box_scales
  anchor_ratios = C.anchor_box_ratios
  num_anchors = len(anchor_sizes) * len(anchor_ratios)  
  # calculate the output map size based on the network architecture
  (output_width, output_height) = img_length_calc_function(resized_width, resized_height)
  n_anchratios = len(anchor_ratios)
  # initialise empty output objectives
  y_rpn_overlap = np.zeros((output_height, output_width, num_anchors))
  y_is_box_valid = np.zeros((output_height, output_width, num_anchors))
  y_rpn_regr = np.zeros((output_height, output_width, num_anchors * 4))
  num_bboxes = len(img_data['bboxes'])
  num_anchors_for_bbox = np.zeros(num_bboxes).astype(int)
  best_anchor_for_bbox = -1*np.ones((num_bboxes, 4)).astype(int)
  best_iou_for_bbox = np.zeros(num_bboxes).astype(np.float32)
  best_x_for_bbox = np.zeros((num_bboxes, 4)).astype(int)
  best_dx_for_bbox = np.zeros((num_bboxes, 4)).astype(np.float32)
  # get the GT box coordinates, and resize to account for image resizing
  gta = np.zeros((num_bboxes, 4))
  for bbox_num, bbox in enumerate(img_data['bboxes']):
    # get the GT box coordinates, and resize to account for image resizing
    gta[bbox_num, 0] = bbox['x1'] * (resized_width / float(width))
    gta[bbox_num, 1] = bbox['x2'] * (resized_width / float(width))
    gta[bbox_num, 2] = bbox['y1'] * (resized_height / float(height))
    gta[bbox_num, 3] = bbox['y2'] * (resized_height / float(height))
  # rpn ground truth
  for anchor_size_idx in range(len(anchor_sizes)):
    for anchor_ratio_idx in range(n_anchratios):
      anchor_x = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][0]
      anchor_y = anchor_sizes[anchor_size_idx] * anchor_ratios[anchor_ratio_idx][1] 
      for ix in range(output_width):          
        # x-coordinates of the current anchor box 
        x1_anc = downscale * (ix + 0.5) - anchor_x / 2
        x2_anc = downscale * (ix + 0.5) + anchor_x / 2  
        # ignore boxes that go across image boundaries          
        if x1_anc < 0 or x2_anc > resized_width:
          continue
        for jy in range(output_height):
          # y-coordinates of the current anchor box
          y1_anc = downscale * (jy + 0.5) - anchor_y / 2
          y2_anc = downscale * (jy + 0.5) + anchor_y / 2
          # ignore boxes that go across image boundaries
          if y1_anc < 0 or y2_anc > resized_height:
            continue
          # bbox_type indicates whether an anchor should be a target 
          bbox_type = 'neg'
          # this is the best IOU for the (x,y) coord and the current anchor
          # note that this is different from the best IOU for a GT bbox
          best_iou_for_loc = 0.0
          for bbox_num in range(num_bboxes):
            # get IOU of the current GT box and the current anchor box
            curr_iou = iou([gta[bbox_num, 0], gta[bbox_num, 2], gta[bbox_num, 1], gta[bbox_num, 3]], [x1_anc, y1_anc, x2_anc, y2_anc])
            # calculate the regression targets if they will be needed
            if curr_iou > best_iou_for_bbox[bbox_num] or curr_iou > C.rpn_max_overlap:
              cx = (gta[bbox_num, 0] + gta[bbox_num, 1]) / 2.0
              cy = (gta[bbox_num, 2] + gta[bbox_num, 3]) / 2.0
              cxa = (x1_anc + x2_anc)/2.0
              cya = (y1_anc + y2_anc)/2.0
              tx = (cx - cxa) / (x2_anc - x1_anc)
              ty = (cy - cya) / (y2_anc - y1_anc)
              tw = np.log((gta[bbox_num, 1] - gta[bbox_num, 0]) / (x2_anc - x1_anc))
              th = np.log((gta[bbox_num, 3] - gta[bbox_num, 2]) / (y2_anc - y1_anc))
            if img_data['bboxes'][bbox_num]['class'] != 'bg':
              # all GT boxes should be mapped to an anchor box, so we keep track of which anchor box was best
              if curr_iou > best_iou_for_bbox[bbox_num]:
                best_anchor_for_bbox[bbox_num] = [jy, ix, anchor_ratio_idx, anchor_size_idx]
                best_iou_for_bbox[bbox_num] = curr_iou
                best_x_for_bbox[bbox_num,:] = [x1_anc, x2_anc, y1_anc, y2_anc]
                best_dx_for_bbox[bbox_num,:] = [tx, ty, tw, th]
              # we set the anchor to positive if the IOU is >0.7 (it does not matter if there was another better box, it just indicates overlap)
              if curr_iou > C.rpn_max_overlap:
                bbox_type = 'pos'
                num_anchors_for_bbox[bbox_num] += 1
                # we update the regression layer target if this IOU is the best for the current (x,y) and anchor position
                if curr_iou > best_iou_for_loc:
                  best_iou_for_loc = curr_iou
                  best_regr = (tx, ty, tw, th)
              # if the IOU is >0.3 and <0.7, it is ambiguous and no included in the objective
              if C.rpn_min_overlap < curr_iou < C.rpn_max_overlap:
                # gray zone between neg and pos
                if bbox_type != 'pos':
                  bbox_type = 'neutral'
          # turn on or off outputs depending on IOUs
          if bbox_type == 'neg':
            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
          elif bbox_type == 'neutral':
            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 0
          elif bbox_type == 'pos':
            y_is_box_valid[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
            y_rpn_overlap[jy, ix, anchor_ratio_idx + n_anchratios * anchor_size_idx] = 1
            start = 4 * (anchor_ratio_idx + n_anchratios * anchor_size_idx)
            y_rpn_regr[jy, ix, start:start+4] = best_regr
  # we ensure that every bbox has at least one positive RPN region
  for idx in range(num_anchors_for_bbox.shape[0]):
    if num_anchors_for_bbox[idx] == 0:
      # no box with an IOU greater than zero ...
      if best_anchor_for_bbox[idx, 0] == -1:
        continue
      y_is_box_valid[
        best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
        best_anchor_for_bbox[idx,3]] = 1
      y_rpn_overlap[
        best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], best_anchor_for_bbox[idx,2] + n_anchratios *
        best_anchor_for_bbox[idx,3]] = 1
      start = 4 * (best_anchor_for_bbox[idx,2] + n_anchratios * best_anchor_for_bbox[idx,3])
      y_rpn_regr[
        best_anchor_for_bbox[idx,0], best_anchor_for_bbox[idx,1], start:start+4] = best_dx_for_bbox[idx, :]
  y_rpn_overlap = np.transpose(y_rpn_overlap, (2, 0, 1))
  y_rpn_overlap = np.expand_dims(y_rpn_overlap, axis=0)
  y_is_box_valid = np.transpose(y_is_box_valid, (2, 0, 1))
  y_is_box_valid = np.expand_dims(y_is_box_valid, axis=0)
  y_rpn_regr = np.transpose(y_rpn_regr, (2, 0, 1))
  y_rpn_regr = np.expand_dims(y_rpn_regr, axis=0)
  pos_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 1, y_is_box_valid[0, :, :, :] == 1))
  neg_locs = np.where(np.logical_and(y_rpn_overlap[0, :, :, :] == 0, y_is_box_valid[0, :, :, :] == 1))
  num_pos = len(pos_locs[0])
  # one issue is that the RPN has many more negative than positive regions, so we turn off some of the negative
  # regions. We also limit it to 256 regions.
  num_regions = 256
  if len(pos_locs[0]) > num_regions/2:
    val_locs = random.sample(range(len(pos_locs[0])), len(pos_locs[0]) - num_regions/2)
    y_is_box_valid[0, pos_locs[0][val_locs], pos_locs[1][val_locs], pos_locs[2][val_locs]] = 0
    num_pos = num_regions/2
  if len(neg_locs[0]) + num_pos > num_regions:
    val_locs = random.sample(range(len(neg_locs[0])), len(neg_locs[0]) - num_pos)
    y_is_box_valid[0, neg_locs[0][val_locs], neg_locs[1][val_locs], neg_locs[2][val_locs]] = 0
  y_rpn_cls = np.concatenate([y_is_box_valid, y_rpn_overlap], axis=1)
  y_rpn_regr = np.concatenate([np.repeat(y_rpn_overlap, 4, axis=1), y_rpn_regr], axis=1)
  return np.copy(y_rpn_cls), np.copy(y_rpn_regr)
class threadsafe_iter:
  """Takes an iterator/generator and makes it thread-safe by
  serializing call to the `next` method of given iterator/generator.
  """
  def __init__(self, it):
    self.it = it
    self.lock = threading.Lock()
  def __iter__(self):
    return self
  def next(self):
    with self.lock:
      return next(self.it)    
def threadsafe_generator(f):
  """A decorator that takes a generator function and makes it thread-safe.
  """
  def g(*a, **kw):
    return threadsafe_iter(f(*a, **kw))
  return g
def get_anchor_gt(all_img_data, class_count, C, img_length_calc_function, backend, mode='train'):
  # The following line is not useful with Python 3.5, it is kept for the legacy
  # all_img_data = sorted(all_img_data)
  sample_selector = SampleSelector(class_count)
  while True:
    if mode == 'train':
      np.random.shuffle(all_img_data)
    for img_data in all_img_data:
      try:
        if C.balanced_classes and sample_selector.skip_sample_for_balanced_class(img_data):
          continue
        # read in image, and optionally add augmentation
        if mode == 'train':
          img_data_aug, x_img = data_augment.augment(img_data, C, augment=True)
        else:
          img_data_aug, x_img = data_augment.augment(img_data, C, augment=False)
        (width, height) = (img_data_aug['width'], img_data_aug['height'])
        (rows, cols, _) = x_img.shape
        assert cols == width
        assert rows == height
        # get image dimensions for resizing
        (resized_width, resized_height) = get_new_img_size(width, height, C.im_size)
        # resize the image so that smalles side is length = 600px
        x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC)
        try:
          y_rpn_cls, y_rpn_regr = calc_rpn(C, img_data_aug, width, height, resized_width, resized_height, img_length_calc_function)
        except:
          continue
        # Zero-center by mean pixel, and preprocess image
        x_img = x_img[:,:, (2, 1, 0)]  # BGR -> RGB
        x_img = x_img.astype(np.float32)
        x_img[:, :, 0] -= C.img_channel_mean[0]
        x_img[:, :, 1] -= C.img_channel_mean[1]
        x_img[:, :, 2] -= C.img_channel_mean[2]
        x_img /= C.img_scaling_factor
        x_img = np.transpose(x_img, (2, 0, 1))
        x_img = np.expand_dims(x_img, axis=0)
        y_rpn_regr[:, y_rpn_regr.shape[1]//2:, :, :] *= C.std_scaling
        if backend == 'tf':
          x_img = np.transpose(x_img, (0, 2, 3, 1))
          y_rpn_cls = np.transpose(y_rpn_cls, (0, 2, 3, 1))
          y_rpn_regr = np.transpose(y_rpn_regr, (0, 2, 3, 1))
        yield np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], img_data_aug
      except Exception as e:
        print(e)
        continue

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
28天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
82 1
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
11天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
24天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
33 0
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第10天】深入理解深度学习中的卷积神经网络(CNN)
127 0

热门文章

最新文章