多尺度retinex图像去雾算法matlab仿真

简介: 多尺度retinex图像去雾算法matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
多尺度Retinex(MSR)图像去雾算法是一种基于Retinex理论的去雾算法。该算法通过在大、中、小三个尺度上计算图像的反射分量,并对其进行加权平均,从而消除雾气对图像的影响,提高图像的可视度。下面将详细介绍该算法的原理和数学公式。

   多尺度Retinex图像去雾算法的基本思想是在不同尺度上计算图像的反射分量,然后对其进行加权平均,以消除雾气对图像的影响。该算法认为,图像的亮度是由物体表面反射的光线和环境中的光照共同决定的。在雾气的影响下,图像中的物体表面反射的光线会被散射和吸收,导致图像的可视度降低。因此,该算法通过计算图像的反射分量,消除雾气对图像的影响,提高图像的可视度。

具体地,多尺度Retinex图像去雾算法可以分为以下几个步骤:

对原始图像进行高斯滤波,得到不同尺度下的图像。
对每个尺度下的图像进行单尺度Retinex计算,得到该尺度下的反射分量。
对所有尺度下的反射分量进行加权平均,得到最终的反射分量。
将最终的反射分量与原始图像进行融合,得到去雾后的图像。
多尺度Retinex图像去雾算法的数学公式主要包括以下几个部分:

高斯滤波

    对原始图像I进行高斯滤波,得到不同尺度下的图像Ii,其中i表示尺度参数。高斯滤波的数学公式可以表示为:

Ii(x,y)=∑m=−∞∞∑n=−∞∞I(x+m,y+n)G(m,n,σi)Ii(x,y) = \sum{m=-\infty}^{\infty} \sum{n=-\infty}^{\infty} I(x+m,y+n) G(m,n,\sigma_i)Ii(x,y)=∑m=−∞∞∑n=−∞∞I(x+m,y+n)G(m,n,σi)

其中,(x,y)表示像素坐标,G(m,n,σi)表示高斯滤波器的系数,σi表示尺度参数。

单尺度Retinex计算

    对每个尺度下的图像Ii进行单尺度Retinex计算,得到该尺度下的反射分量Ri,其中i表示尺度参数。单尺度Retinex的数学公式可以表示为:

Ri(x,y)=log⁡Ii(x,y)−log⁡(Ii∗G(x,y,σi))Ri(x,y) = \log I_i(x,y) - \log (I_i * G(x,y,\sigma_i))Ri(x,y)=logIi(x,y)−log(Ii∗G(x,y,σi))

其中,*表示卷积运算。

加权平均

     对所有尺度下的反射分量Ri进行加权平均,得到最终的反射分量R。加权平均的数学公式可以表示为:

R=∑i=1nωiRiR = \sum_{i=1}^{n} \omega_i R_iR=∑i=1nωiRi

    其中,n表示尺度数量,ωi表示第i个尺度的权重。通常情况下,大尺度的权重较小,小尺度的权重较大。

图像融合

   将最终的反射分量R与原始图像I进行融合,得到去雾后的图像J。图像融合的数学公式可以表示为:

J=I+RJ = I + RJ=I+R

   需要注意的是,在实际应用中,为了避免图像过亮或过暗,可以对反射分量R进行一定的调整。例如,可以对其进行截断处理或归一化处理等。此外,为了提高算法的效率,可以采用快速傅里叶变换(FFT)等技术进行加速计算。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')


img_in  = im2double(imread('1.jpg'));
scales  = [2 100 200];
alpha   = 200;
w       = [1 1 1]/3;
d       = 1.5;
img_out = func_msretinex(img_in,scales,w,alpha,d);

figure;
imshow([img_in img_out]);


img_in  = im2double(imread('2.PNG'));
img_out = func_msretinex(img_in,scales,w,alpha,d);

figure;
imshow([img_in img_out]);


img_in  = im2double(imread('3.png'));
img_out = func_msretinex(img_in,scales,w,alpha,d);

figure;
imshow([img_in img_out]);




img_in  = im2double(imread('4.jpg'));
img_out = func_msretinex(img_in,scales,w,alpha,d);

figure;
imshow([img_in img_out]);
相关文章
|
3天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
3天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
9天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
1月前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

热门文章

最新文章