基于WTMM算法的图像多重分形谱计算matlab仿真

简介: 基于WTMM算法的图像多重分形谱计算matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于WTMM算法的图像多重分形谱计算是一种利用小波变换模极大值(WTMM)方法,对图像进行多重分形分析的方法。下面将详细介绍这种方法的原理和数学公式。

3.1、WTMM算法概述
分形理论是一种研究自然界中不规则、复杂现象的数学工具,而多重分形则是分形理论的一个重要分支,用于描述具有不同奇异程度的分形结构。在图像处理中,多重分形分析可以帮助我们更好地理解图像的纹理、边缘等特征,以及它们在不同尺度下的表现。

   WTMM算法是一种基于小波变换模极大值的方法,用于计算图像的多重分形谱。该方法主要利用小波变换对图像进行多尺度分解,提取出图像在不同尺度下的边缘信息。然后,通过对这些边缘信息进行统计分析,计算出图像的多重分形谱。

具体来说,WTMM算法的计算步骤如下:

对图像进行二维小波变换,得到一系列小波系数。
对每个尺度下的小波系数进行模极大值检测,提取出图像的边缘信息。
对提取出的边缘信息进行统计分析,计算出图像的多重分形谱。
3.2、WTMM算法原理
WTMM算法的数学公式主要包括以下几个部分:

3.2.1 二维小波变换
对图像f(x,y)进行二维小波变换,可以得到一系列小波系数Wf(x,y),其中下标f表示小波变换的类型,如Haar小波、Daubechies小波等。二维小波变换的数学公式可以表示为:

Wf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudvWf(x,y) = \int \int f(u,v) \psi_f(x-u,y-v) du dvWf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudv

其中,ψf(x,y)是小波基函数。

3.2.2 模极大值检测
对每个尺度下的小波系数进行模极大值检测,可以提取出图像的边缘信息。具体地,对于每个像素位置(x,y),如果满足以下两个条件:

|Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)||W_f(x,y)| \geq |W_f(x+1,y)|, |W_f(x,y)| \geq |W_f(x-1,y)|,|W_f(x,y)| \geq |W_f(x,y+1)|, |W_f(x,y)| \geq |W_f(x,y-1)||Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)|

则称该像素位置为模极大值点。

3.2.3 多重分形谱计算
通过对提取出的边缘信息进行统计分析,可以计算出图像的多重分形谱。具体地,可以用以下公式计算多重分形谱:

α=lim⁡ε→0log⁡|Wf(x,y)|log⁡ε\alpha = \lim_{\varepsilon \to 0} \frac{\log |W_f(x,y)|}{\log \varepsilon}α=limε→0logεlog⁡|Wf(x,y)|

   其中,ε是小波变换的尺度参数,α是奇异指数,用于描述图像在不同尺度下的奇异程度。通过对所有模极大值点的奇异指数进行统计分析,可以得到图像的多重分形谱。

4.部分核心程序

%对保存的多张图片读取并调用WTMM方法求图像的多重分形谱,对得到的结果保存其特征值
if sel == 1
   k = 1;

    for i=1:2*n1*n2;

        if i<=n1*n2
           k      = i;
           folder = 'save_images\1\';
           lists  = dir('save_images\1\*.jpg');        
        end

        if i<=2*n1*n2 & i>n1*n2
           k      = i - n1*n2;
           folder = 'save_images\2\';
           lists  = dir('save_images\2\*.jpg');        
        end        


        i
        %read an image
        I                               = imread(fullfile(folder,lists(k).name));
        %调用分形函数
        [qt,rt,ft,fft,Dt,feature_data]  = func_Wavelet_multifractal(I);
        q{i}                            = qt;
        r{i}                            = rt;    
        f{i}                            = ft;   
        ff{i}                           = fft;   
        D{i}                            = Dt;
        Feature{i}                      = feature_data;
    end

    save result.mat q r f ff D Feature

    K = 120;
    figure;
    plot(r{K},f{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    xlabel('奇异指数a');
    ylabel('多重分行谱f(a)') 
    grid on;

    figure;
    plot(q{K}+2,D{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    xlabel('q');
    ylabel('D(q)') 
    grid on;

    figure
    plot(q{K},r{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    title('q和阿尔法a'); 
    xlabel('权重因子q');
    ylabel('奇异指数a');
    grid on;

    figure;
    plot(q{K},f{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    title('q和f(a) '); 
    xlabel('权重因子q');
    ylabel('多重分行谱f(a)'); 
    grid on;
end 




%%
%调用分类器对特征参数进行分类
if sel == 0
    load result.mat %q r f ff Feature

    K = 120;
    figure;
    plot(r{K},f{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    xlabel('奇异指数a');
    ylabel('多重分行谱f(a)') 
    grid on;

    figure;
    plot(q{K}+2,D{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    xlabel('q');
    ylabel('D(q)') 
    grid on;

    figure
    plot(q{K},r{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    title('q和阿尔法a'); 
    xlabel('权重因子q');
    ylabel('奇异指数a');
    grid on;

    figure;
    plot(q{K},f{K},'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
    title('q和f(a) '); 
    xlabel('权重因子q');
    ylabel('多重分行谱f(a)'); 
    grid on;   




    for i = 1:length(Feature)
        P(i) =  Feature{i}(3);
    end 

    T =  [1*ones(1,length(Feature)/2),2*ones(1,length(Feature)/2)];

    t1                      = clock;                              %计时开始
    net                     = fitnet(65);
    net.trainParam.epochs   = 1000;                               %设置训练次数
    net.trainParam.goal     = 0.0001;                             %设置性能函数
    net.trainParam.show     = 1;                                  %每10显示
    net.trainParam.Ir       = 0.005;                              %设置学习速率
    net                     = train(net,P,T);                     %训练BP网络
    datat                   = etime(clock,t1);
    Nets                    = net;
    view(Nets);
    figure;
    plot(P,'b-*');

    y = sim(net,P);  

    figure;
    stem(y,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
    hold on
    plot(T,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    legend('预测数据','实际数据');
    title('输出1为第一类,输出2为第二类(即可对比实际的健康部分和肿瘤部分)');


    disp('预测正确率');
    error = 0;
    for i = 1:length(y)
        if i <= length(y)/2 
           if y(i) > 1.5
              error = error + 1;
           end
        else
           if y(i) < 1.5
              error = error + 1;
           end          
        end
    end
    1-error/length(y)
end
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
20小时前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
18 5
|
19小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。

热门文章

最新文章