1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.算法理论概述
基于WTMM算法的图像多重分形谱计算是一种利用小波变换模极大值(WTMM)方法,对图像进行多重分形分析的方法。下面将详细介绍这种方法的原理和数学公式。
3.1、WTMM算法概述
分形理论是一种研究自然界中不规则、复杂现象的数学工具,而多重分形则是分形理论的一个重要分支,用于描述具有不同奇异程度的分形结构。在图像处理中,多重分形分析可以帮助我们更好地理解图像的纹理、边缘等特征,以及它们在不同尺度下的表现。
WTMM算法是一种基于小波变换模极大值的方法,用于计算图像的多重分形谱。该方法主要利用小波变换对图像进行多尺度分解,提取出图像在不同尺度下的边缘信息。然后,通过对这些边缘信息进行统计分析,计算出图像的多重分形谱。
具体来说,WTMM算法的计算步骤如下:
对图像进行二维小波变换,得到一系列小波系数。
对每个尺度下的小波系数进行模极大值检测,提取出图像的边缘信息。
对提取出的边缘信息进行统计分析,计算出图像的多重分形谱。
3.2、WTMM算法原理
WTMM算法的数学公式主要包括以下几个部分:
3.2.1 二维小波变换
对图像f(x,y)进行二维小波变换,可以得到一系列小波系数Wf(x,y),其中下标f表示小波变换的类型,如Haar小波、Daubechies小波等。二维小波变换的数学公式可以表示为:
Wf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudvWf(x,y) = \int \int f(u,v) \psi_f(x-u,y-v) du dvWf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudv
其中,ψf(x,y)是小波基函数。
3.2.2 模极大值检测
对每个尺度下的小波系数进行模极大值检测,可以提取出图像的边缘信息。具体地,对于每个像素位置(x,y),如果满足以下两个条件:
|Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)||W_f(x,y)| \geq |W_f(x+1,y)|, |W_f(x,y)| \geq |W_f(x-1,y)|,|W_f(x,y)| \geq |W_f(x,y+1)|, |W_f(x,y)| \geq |W_f(x,y-1)||Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)|
则称该像素位置为模极大值点。
3.2.3 多重分形谱计算
通过对提取出的边缘信息进行统计分析,可以计算出图像的多重分形谱。具体地,可以用以下公式计算多重分形谱:
α=limε→0log|Wf(x,y)|logε\alpha = \lim_{\varepsilon \to 0} \frac{\log |W_f(x,y)|}{\log \varepsilon}α=limε→0logεlog|Wf(x,y)|
其中,ε是小波变换的尺度参数,α是奇异指数,用于描述图像在不同尺度下的奇异程度。通过对所有模极大值点的奇异指数进行统计分析,可以得到图像的多重分形谱。
4.部分核心程序
%对保存的多张图片读取并调用WTMM方法求图像的多重分形谱,对得到的结果保存其特征值
if sel == 1
k = 1;
for i=1:2*n1*n2;
if i<=n1*n2
k = i;
folder = 'save_images\1\';
lists = dir('save_images\1\*.jpg');
end
if i<=2*n1*n2 & i>n1*n2
k = i - n1*n2;
folder = 'save_images\2\';
lists = dir('save_images\2\*.jpg');
end
i
%read an image
I = imread(fullfile(folder,lists(k).name));
%调用分形函数
[qt,rt,ft,fft,Dt,feature_data] = func_Wavelet_multifractal(I);
q{i} = qt;
r{i} = rt;
f{i} = ft;
ff{i} = fft;
D{i} = Dt;
Feature{i} = feature_data;
end
save result.mat q r f ff D Feature
K = 120;
figure;
plot(r{K},f{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('奇异指数a');
ylabel('多重分行谱f(a)')
grid on;
figure;
plot(q{K}+2,D{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('q');
ylabel('D(q)')
grid on;
figure
plot(q{K},r{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
title('q和阿尔法a');
xlabel('权重因子q');
ylabel('奇异指数a');
grid on;
figure;
plot(q{K},f{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
title('q和f(a) ');
xlabel('权重因子q');
ylabel('多重分行谱f(a)');
grid on;
end
%%
%调用分类器对特征参数进行分类
if sel == 0
load result.mat %q r f ff Feature
K = 120;
figure;
plot(r{K},f{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('奇异指数a');
ylabel('多重分行谱f(a)')
grid on;
figure;
plot(q{K}+2,D{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('q');
ylabel('D(q)')
grid on;
figure
plot(q{K},r{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
title('q和阿尔法a');
xlabel('权重因子q');
ylabel('奇异指数a');
grid on;
figure;
plot(q{K},f{K},'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
title('q和f(a) ');
xlabel('权重因子q');
ylabel('多重分行谱f(a)');
grid on;
for i = 1:length(Feature)
P(i) = Feature{i}(3);
end
T = [1*ones(1,length(Feature)/2),2*ones(1,length(Feature)/2)];
t1 = clock; %计时开始
net = fitnet(65);
net.trainParam.epochs = 1000; %设置训练次数
net.trainParam.goal = 0.0001; %设置性能函数
net.trainParam.show = 1; %每10显示
net.trainParam.Ir = 0.005; %设置学习速率
net = train(net,P,T); %训练BP网络
datat = etime(clock,t1);
Nets = net;
view(Nets);
figure;
plot(P,'b-*');
y = sim(net,P);
figure;
stem(y,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(T,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
legend('预测数据','实际数据');
title('输出1为第一类,输出2为第二类(即可对比实际的健康部分和肿瘤部分)');
disp('预测正确率');
error = 0;
for i = 1:length(y)
if i <= length(y)/2
if y(i) > 1.5
error = error + 1;
end
else
if y(i) < 1.5
error = error + 1;
end
end
end
1-error/length(y)
end