六六力扣刷题双指针之三数之和

简介: 六六力扣刷题双指针之三数之和

前言

之前小六六一直觉得自己的算法比较菜,算是一个短板吧,以前刷题也还真是三天打鱼,两天晒网,刷几天,然后就慢慢的不坚持了,所以这次,借助平台的活动,打算慢慢的开始开刷,并且自己还会给刷的题总结下,谈谈自己的一些思考,和自己的思路等等,希望对小伙伴能有所帮助吧,也可以借此机会把自己短板补一补,希望自己能坚持下去呀

链表的合集

字符串

双指针

题目

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请

你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。

题解

题目中要求找到所有「不重复」且和为 00 的三元组,这个「不重复」的要求使得我们无法简单地使用三重循环枚举所有的三元组。这是因为在最坏的情况下,数组中的元素全部为 00,即

[0, 0, 0, 0, 0, ..., 0, 0, 0] 任意一个三元组的和都为 00。如果我们直接使用三重循环枚举三元组,会得到 O(N^3)O(N 3 ) 个满足题目要求的三元组(其中 NN 是数组的长度)时间复杂度至少为 O(N^3)O(N 3 )。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。

「不重复」的本质是什么?我们保持三重循环的大框架不变,只需要保证:

第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;

第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。

也就是说,我们枚举的三元组 (a, b, c)(a,b,c) 满足 a \leq b \leq ca≤b≤c,保证了只有 (a, b, c)(a,b,c) 这个顺序会被枚举到,而 (b, a, c)(b,a,c)、(c, b, a)(c,b,a) 等等这些不会,这样就减少了重复。要实现这一点,我们可以将数组中的元素从小到大进行排序,随后使用普通的三重循环就可以满足上面的要求。

同时,对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。举个例子,如果排完序的数组为

[0, 1, 2, 2, 2, 3]

我们使用三重循环枚举到的第一个三元组为 (0, 1, 2)(0,1,2),如果第三重循环继续枚举下一个元素,那么仍然是三元组 (0, 1, 2)(0,1,2),产生了重复。因此我们需要将第三重循环「跳到」下一个不相同的元素,即数组中的最后一个元素 33,枚举三元组 (0, 1, 3)(0,1,3)。

nums.sort()
for first = 0 .. n-1
    // 只有和上一次枚举的元素不相同,我们才会进行枚举
    if first == 0 or nums[first] != nums[first-1] then
        for second = first+1 .. n-1
            if second == first+1 or nums[second] != nums[second-1] then
                for third = second+1 .. n-1
                    if third == second+1 or nums[third] != nums[third-1] then
                        // 判断是否有 a+b+c==0
                        check(first, second, third)

这种方法的时间复杂度仍然为 O(N^3)O(N 3 ),毕竟我们还是没有跳出三重循环的大框架。然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素 aa 和 bb,那么只有唯一的 cc 满足 a+b+c=0a+b+c=0。当第二重循环往后枚举一个元素 b'b ′ 时,由于 b' > bb ′

b,那么满足 a+b'+c'=0a+b ′ +c ′ =0 的 c'c ′ 一定有 c' < cc ′ <c,即 c'c ′ 在数组中一定出现在 cc 的左侧。也就是说,我们可以从小到大枚举 bb,同时从大到小枚举 cc,即第二重循环和第三重循环实际上是并列的关系。

有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,从而得到下面的伪代码:

nums.sort()
for first = 0 .. n-1
    if first == 0 or nums[first] != nums[first-1] then
        // 第三重循环对应的指针
        third = n-1
        for second = first+1 .. n-1
            if second == first+1 or nums[second] != nums[second-1] then
                // 向左移动指针,直到 a+b+c 不大于 0
                while nums[first]+nums[second]+nums[third] > 0
                    third = third-1
                // 判断是否有 a+b+c==0
                check(first, second, third)

这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从 O(N^2)O(N 2 ) 减少至O(N)。为什么是 O(N) 呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的 bb),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为 O(N),均摊下来,每次也向左移动一个位置,因此时间复杂度为 O(N)。

注意到我们的伪代码中还有第一重循环,时间复杂度为 O(N),因此枚举的总时间复杂度为 O(N 2 )。由于排序的时间复杂度为 O(NlogN),在渐进意义下小于前者,因此算法的总时间复杂度为 O(N 2 )。

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        int n = nums.length;
        Arrays.sort(nums);
        List<List<Integer>> ans = new ArrayList<List<Integer>>();
        // 枚举 a
        for (int first = 0; first < n; ++first) {
            // 需要和上一次枚举的数不相同
            if (first > 0 && nums[first] == nums[first - 1]) {
                continue;
            }
            // c 对应的指针初始指向数组的最右端
            int third = n - 1;
            int target = -nums[first];
            // 枚举 b
            for (int second = first + 1; second < n; ++second) {
                // 需要和上一次枚举的数不相同
                if (second > first + 1 && nums[second] == nums[second - 1]) {
                    continue;
                }
                // 需要保证 b 的指针在 c 的指针的左侧
                while (second < third && nums[second] + nums[third] > target) {
                    --third;
                }
                // 如果指针重合,随着 b 后续的增加
                // 就不会有满足 a+b+c=0 并且 b<c 的 c 了,可以退出循环
                if (second == third) {
                    break;
                }
                if (nums[second] + nums[third] == target) {
                    List<Integer> list = new ArrayList<Integer>();
                    list.add(nums[first]);
                    list.add(nums[second]);
                    list.add(nums[third]);
                    ans.add(list);
                }
            }
        }
        return ans;
    }
}

结束

好了,今天这题到这了,大家继续加油!不能停,决定不能停!我是小六六,三天打鱼,两天晒网!

相关文章
|
5月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
2月前
|
算法 容器
【算法】——双指针算法合集(力扣)
移动零,复写零,快乐数,盛最多水的容器,有效三角形的个数,和为s的两个数(查找总价格为目标值的两个商品 ),三数之和,四数之和
|
6月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
141 2
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
87 1
|
5月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
6月前
|
索引 Python
【Leetcode刷题Python】从列表list中创建一颗二叉树
本文介绍了如何使用Python递归函数从列表中创建二叉树,其中每个节点的左右子节点索引分别是当前节点索引的2倍加1和2倍加2。
85 7
|
6月前
|
算法 Python
【Leetcode刷题Python】 LeetCode 2038. 如果相邻两个颜色均相同则删除当前颜色
本文介绍了LeetCode 2038题的解法,题目要求在一个由'A'和'B'组成的字符串中,按照特定规则轮流删除颜色片段,判断Alice是否能够获胜,并提供了Python的实现代码。
66 3
|
6月前
|
算法 Python
【Leetcode刷题Python】剑指 Offer 33. 二叉搜索树的后序遍历序列
本文提供了一种Python算法,用以判断给定整数数组是否为某二叉搜索树的后序遍历结果,通过识别根节点并递归验证左右子树的值是否满足二叉搜索树的性质。
31 3
|
6月前
|
Python
【Leetcode刷题Python】50. Pow(x, n)
本文介绍了LeetCode第50题"Pow(x, n)"的解法,题目要求实现计算x的n次幂的函数,文章提供了递归分治法的详细解析和Python实现代码。
37 1