CVPR 2023 | 主干网络FasterNet 核心解读 代码分析

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。

本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet

论文提出了一种新的卷积算子,partial convolution,部分卷积(PConv),通过减少冗余计算内存访问来更有效地提取空间特征。

创新在于部分卷积(PConv),它选择一部分通道的特性进行常规卷积剩余部分通道的特性保持不变,降低了计算复杂度,从而实现了快速高效的神经网络。

区别于常规卷积:PConv只对输入通道的一部分应用卷积,而保留其余部分不变。

论文地址:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

代码地址:https://github.com/JierunChen/FasterNet/tree/master


 背景:

  • MobileNet、ShuffleNet和GhostNet等利用深度卷积(DWConv)组卷积(GConv)来提取空间特征。
  • 然而,在减少FLOPs的过程中,算子经常会受到内存访问增加的副作用的影响
  • MicroNet进一步分解和稀疏网络,将其FLOPs推至极低水平。尽管这种方法在FLOPs方面有所改进,但其碎片计算效率很低。
  • 上述网络通常伴随着额外的数据操作,如级联、Shuffle和池化这些操作的运行时间对于小型模型来说往往很重要


一、PConv算子设计原理

1、这种部分卷积的核心思想对输入特征图的部分通道应用卷积操作而保留其他通道不变。这种操作可以有效地减少计算冗余,提高计算效率。

image.gif

对于连续或规则的内存访问,将第一个或最后一个连续的通道视为整个特征图的代表进行计算。

在不丧失一般性的情况下认为输入和输出特征图具有相同数量的通道

设计原因

通过利用特征图的冗余度可以进一步优化成本。

如下图所示,特征图在不同通道之间具有高度相似性。许多其他著作也涵盖了这种冗余,但很少有人以简单而有效的方式充分利用它。

image.gif

于是出了PConv,对输入特征图的部分通道应用卷积操作而保留其他通道不变,同时减少计算冗余和内存访问。

2、为了充分有效地利用来自所有通道的信息,进一步将逐点卷积(PWConv)附加到PConv

它们在输入特征图上的有效感受野看起来像一个T形Conv,与均匀处理补丁的常规Conv相比,它更专注于中心位置。

image.gif

通过实验表明:中心位置是卷积操作中最常见的突出位置,即中心位置的权重比周围的更重。这与集中于中心位置的T形计算一致。

虽然T形卷积可以直接用于高效计算,但作者表明,将T形卷积分解为PConv和PWConv更好,因为该分解利用了卷积操作间冗余并进一步节省了FLOPs。


二、PConv算子的代码解析

PConv算子的代码:

'''
输入三个参数:dim(输入特征图的通道数),n_div(分割的组数)和forward(前向传播的方法)
输出:卷积后的特征图
'''
class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div # 计算出卷积部分的通道数
        self.dim_untouched = dim - self.dim_conv3 # 计算出不需要卷积部分的通道数
        # 定义一个3*3卷积,输入通道数为self.dim_conv3,输出通道数也为self.dim_conv3,步长为1,填充为1,且不使用bias。
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)
        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError
    # 只适合推理
    def forward_slicing(self, x: Tensor) -> Tensor:
        # 对输入x进行深拷贝,以保持原始输入的完整性。后面的操作不会改变原始输入x。
        x = x.clone()   
        # 对输入x中前self.dim_conv3个通道应用卷积操作,并将结果保存回x中对应的位置。
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
        return x
    # 适合训练/推理
    def forward_split_cat(self, x: Tensor) -> Tensor:
        # 使用torch.split函数将输入x沿着通道维度(即第1维,索引从0开始)分割成两个部分,
        # 分别为x1和x2。分割的长度为[self.dim_conv3, self.dim_untouched],
        # 即分割后的x1的通道数为self.dim_conv3,x2的通道数为self.dim_untouched。
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)
        return x

image.gif

这段代码定义了一个名为 Partial_conv3 的 PyTorch 模块,它是nn.Module的子类。这个模块主要实现了一种部分卷积(Partial Convolution);

这种部分卷积的核心思想对输入特征图的部分通道应用卷积操作而保留其他通道不变。这种操作可以有效地减少计算冗余,提高计算效率。

image.gif

方式1:slicing

# 只适合推理
    def forward_slicing(self, x: Tensor) -> Tensor:
        # 对输入x进行深拷贝,以保持原始输入的完整性。后面的操作不会改变原始输入x。
        x = x.clone()   
        # 对输入x中前self.dim_conv3个通道应用卷积操作,并将结果保存回x中对应的位置。
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
        return x

image.gif

方式2:split_cat

# 适合训练/推理
    def forward_split_cat(self, x: Tensor) -> Tensor:
        # 使用torch.split函数将输入x沿着通道维度(即第1维,索引从0开始)分割成两个部分,
        # 分别为x1和x2。分割的长度为[self.dim_conv3, self.dim_untouched],
        # 即分割后的x1的通道数为self.dim_conv3,x2的通道数为self.dim_untouched。
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)
        return x

image.gif


三、FasterNet模型原理

基于部分卷积算子PConv逐点卷积PWConv,作为主要的算子,进一步提出FasterNet。

这是一个新的神经网络家族,运行速度非常快,对许多视觉任务有效。模型架构如下:

它有4个层次级,每个层次级前面都有一个嵌入层(步长为4的常规4×4卷积)或一个合并层(步长为2的常规2×2卷积),用于空间下采样和通道数量扩展。每个阶段都有一堆FasterNet块。

image.gif

每个FasterNet块有一个PConv层,后跟2个PWConv(或Conv 1×1)层。它们一起显示为倒置残差块,其中中间层具有扩展的通道数量,并且放置了Shorcut以重用输入特征。

最后两个阶段中的块消耗更少的内存访问,并且倾向于具有更高的FLOPS,因此,放置了更多FasterNet块,并相应地将更多计算分配给最后两个阶段。

补充一下标准化和激活层

标准化和激活层对于高性能神经网络也是不可或缺的。

然而,许多先前的工作在整个网络中过度使用这些层,这可能会限制特征多样性,从而损害性能。它还可以降低整体计算速度。

相比之下,只将它们放在每个中间PWConv之后,以保持特征多样性并实现较低的延迟。


四、FasterNet模型测试

使用默认的参数构建FasterNet

       mlp_ratio=2.0,

       embed_dim=96,

       depths=(1, 2, 8, 2),

       drop_path_rate=0.10,

看一下的模型参数 :

image.gif

image.gif

image.gif

感觉模型也不小的。。。。。。。

测试代码分享给大家(代码存放路径:models/model_summary.py)

import torch.nn as nn
from fasternet import FasterNet
from torchsummary import summary
# 默认参数
def fasternet(**kwargs):
    model = FasterNet(**kwargs)
    return model
# S
def fasternet_s(**kwargs):
    model = FasterNet(
        mlp_ratio=2.0,
        embed_dim=128,
        depths=(1, 2, 13, 2),
        drop_path_rate=0.15,
        act_layer='RELU',
        fork_feat=True,
        **kwargs
        )
    return model
# M
def fasternet_m(**kwargs):
    model = FasterNet(
        mlp_ratio=2.0,
        embed_dim=144,
        depths=(3, 4, 18, 3),
        drop_path_rate=0.2,
        act_layer='RELU',
        fork_feat=True,
        **kwargs
        )
    return model
# L
def fasternet_l(**kwargs):
    model = FasterNet(
        mlp_ratio=2.0,
        embed_dim=192,
        depths=(3, 4, 18, 3),
        drop_path_rate=0.3,
        act_layer='RELU',
        fork_feat=True,
        **kwargs
        )
    return model
print("fasternet:", fasternet)
model = fasternet()
summary(model, input_size=(3, 224, 224))
print("fasternet_s:", fasternet_s)
model = fasternet_s()
summary(model, input_size=(3, 224, 224))
print("fasternet_m:", fasternet_m)
model = fasternet_m()
summary(model, input_size=(3, 224, 224))
print("fasternet_l:", fasternet_l)
model = fasternet_l()
summary(model, input_size=(3, 224, 224))

image.gif

github有各个版本的预训练模型,大家可以测试一下。

name resolution acc #params FLOPs model
FasterNet-T0 224x224 71.9 3.9M 0.34G model
FasterNet-T1 224x224 76.2 7.6M 0.85G model
FasterNet-T2 224x224 78.9 15.0M 1.90G model
FasterNet-S 224x224 81.3 31.1M 4.55G model
FasterNet-M 224x224 83.0 53.5M 8.72G model
FasterNet-L 224x224 83.5 93.4M 15.49G model

官方给的数据:


image.gif

五、实验分析

FasterNet在不同设备(CPU、GPU、ARM),精度-吞吐量和精度-延迟权衡方面具有最高的效率。

image.gif

image.gif

image.gif

image.gif

图像分类中,比较ImageNet-1k基准。具有类似TOP-1精度的模型被组合在一起。除MobileViT和EdgeNeXt的分辨率为256×256外,所有型号的分辨率均为224×224。OOM是内存不足的缩写。

image.gif

image.gif


关于COCO目标检测实例分割基准的结果,Flop是根据图像大小(1280,800)计算的。

image.gif

分享完成~

相关文章
|
4月前
|
机器学习/深度学习 算法 网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
YOLOv8专栏探讨了针对目标检测的ConvNet创新,提出ConvNeXt模型,它挑战Transformer在视觉任务中的主导地位。ConvNeXt通过增大卷积核、使用GeLU激活、切换到LayerNorm和改进下采样层,提升了纯ConvNet性能,达到与Transformer相当的准确率和效率。论文和代码已公开。
|
4月前
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量
YOLO目标检测专栏介绍了PP-LCNet,一种基于MKLDNN加速的轻量级CPU网络,提升了模型在多任务中的性能。PP-LCNet利用H-Swish、大核卷积、SE模块和全局平均池化后的全连接层,实现低延迟下的高准确性。代码和预训练模型可在PaddlePaddle的PaddleClas找到。文章提供了网络结构、核心代码及性能提升的详细信息。更多实战案例和YOLO改进见相关链接。
|
4月前
|
机器学习/深度学习 编解码 TensorFlow
【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之EfficientNet,高效的卷积神经网络,降低参数量
YOLOv8专栏探讨了目标检测的创新改进,包括模型扩展和神经架构搜索。提出的新方法使用复合系数平衡网络的深度、宽度和分辨率,产生了EfficientNets系列,其在准确性和效率上超越了先前的ConvNets。EfficientNet-B7在ImageNet上达到84.3%的顶级准确率,同时保持较小的模型大小和更快的推理速度。文章提供了论文和代码链接,以及核心的EfficientNet模型构建Python代码。