YOLOv8目标检测创新改进与实战案例专栏
专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
专栏链接: YOLOv8基础解析+创新改进+实战案例
介绍
摘要
为了设计快速的神经网络,许多研究工作集中在减少浮点运算次数(FLOPs)。我们观察到,尽管减少FLOPs确实带来了一定的性能提升,但并不一定会导致相同程度的延迟减少。这主要是由于浮点运算每秒(FLOPS)效率低下导致的。为了实现更快的网络,我们重新审视了流行的算子,并发现这种低FLOPS主要是由于算子的频繁内存访问,特别是深度卷积。因此,我们提出了一种新型的部分卷积(PConv),通过同时减少冗余计算和内存访问,更高效地提取空间特征。在我们提出的PConv基础上,我们进一步提出了FasterNet,一个新的神经网络家族,在各种设备上实现了显著更高的运行速度,而不牺牲各种视觉任务的准确性。例如,在ImageNet-1k上,我们的FasterNet-T0在GPU、CPU和ARM处理器上的运行速度分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍,同时准确率高出2.9%。我们的FasterNet-L在GPU上的推理吞吐量比新兴的Swin-B高36%,在CPU上节省了37%的计算时间,同时达到了令人印象深刻的83.5%顶级准确率。代码可在此处获取。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
在 PConv 的基础上,作者进一步提出了 FasterNet,一种新的神经网络家族,在各种设备上的运行速度远高于其他网络。例如,在 ImageNet1k 上,小型的 FasterNet-T0 在 GPU、CPU 和 ARM 处理器上分别比 MobileViT XXS 快3.1倍、3.1倍和2.5倍,同时准确率高 2.9%。大型 FasterNet-L 实现了令人印象深刻的 83.5% 的 top-1 精度,与 Swin-B 不相上下,同时在 GPU 上的推理吞吐量提高了 49%,并在 CPU 上节省了 42% 的计算时间。
Pconv卷积
Pconv它只对几个输入通道应用滤波器,而不影响其余的输入通道。PConv比常规卷积获得更低的FLOPs,而比深度/组卷积获得更高的FLOPs。PConv的FLOPs比常规Conv低,而比DWConv/GConv有更高的FLOPs。换句话说,PConv更好地利用了设备上的计算能力。PConv在提取空间特征方面也很有效。
PWConv
PWConv的基本思想是在每个像素点上分别进行卷积计算,从而实现卷积操作。相对于传统的卷积操作,PWConv具有计算效率高和模型参数较少等优势,其主要优势在于它可以用较少的参数实现模型的有效表达,从而减少模型计算量和内存消耗。此外,PWConv还可以用于实现多通道特征的通道关系转换和压缩。
整体结构
FasterNet有四个分层阶段,每个阶段都有一堆 FasterNet 块,前面有一个嵌入层或合并层。最后三层用于要素分类。在每个 FasterNet 块中,一个 PConv 层后面跟着两个 PWConv 层。我们只将归一化和激活层放在中间层之后,以保持特征多样性并实现更低的延迟
task与yaml配置
详见:https://blog.csdn.net/shangyanaf/article/details/139639091