【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。

简介: 【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240611225844458

摘要

为了设计快速的神经网络,许多研究工作集中在减少浮点运算次数(FLOPs)。我们观察到,尽管减少FLOPs确实带来了一定的性能提升,但并不一定会导致相同程度的延迟减少。这主要是由于浮点运算每秒(FLOPS)效率低下导致的。为了实现更快的网络,我们重新审视了流行的算子,并发现这种低FLOPS主要是由于算子的频繁内存访问,特别是深度卷积。因此,我们提出了一种新型的部分卷积(PConv),通过同时减少冗余计算和内存访问,更高效地提取空间特征。在我们提出的PConv基础上,我们进一步提出了FasterNet,一个新的神经网络家族,在各种设备上实现了显著更高的运行速度,而不牺牲各种视觉任务的准确性。例如,在ImageNet-1k上,我们的FasterNet-T0在GPU、CPU和ARM处理器上的运行速度分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍,同时准确率高出2.9%。我们的FasterNet-L在GPU上的推理吞吐量比新兴的Swin-B高36%,在CPU上节省了37%的计算时间,同时达到了令人印象深刻的83.5%顶级准确率。代码可在此处获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

在 PConv 的基础上,作者进一步提出了 FasterNet,一种新的神经网络家族,在各种设备上的运行速度远高于其他网络。例如,在 ImageNet1k 上,小型的 FasterNet-T0 在 GPU、CPU 和 ARM 处理器上分别比 MobileViT XXS 快3.1倍、3.1倍和2.5倍,同时准确率高 2.9%。大型 FasterNet-L 实现了令人印象深刻的 83.5% 的 top-1 精度,与 Swin-B 不相上下,同时在 GPU 上的推理吞吐量提高了 49%,并在 CPU 上节省了 42% 的计算时间。

Pconv卷积

 Pconv它只对几个输入通道应用滤波器,而不影响其余的输入通道。PConv比常规卷积获得更低的FLOPs,而比深度/组卷积获得更高的FLOPs。PConv的FLOPs比常规Conv低,而比DWConv/GConv有更高的FLOPs。换句话说,PConv更好地利用了设备上的计算能力。PConv在提取空间特征方面也很有效。

image-20240611230220897

PWConv

   PWConv的基本思想是在每个像素点上分别进行卷积计算,从而实现卷积操作。相对于传统的卷积操作,PWConv具有计算效率高和模型参数较少等优势,其主要优势在于它可以用较少的参数实现模型的有效表达,从而减少模型计算量和内存消耗。此外,PWConv还可以用于实现多通道特征的通道关系转换和压缩。

image-20240612152402881

整体结构

FasterNet有四个分层阶段,每个阶段都有一堆 FasterNet 块,前面有一个嵌入层或合并层。最后三层用于要素分类。在每个 FasterNet 块中,一个 PConv 层后面跟着两个 PWConv 层。我们只将归一化和激活层放在中间层之后,以保持特征多样性并实现更低的延迟image-20240612152251917

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139639091

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
28天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
81 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
54 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
75 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
109 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
110 0
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。