【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构

简介: 【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

摘要

摘要——我们提出了一种硬件高效的卷积神经网络架构,具有类似 RepVGG 的架构。FLOPs 或参数是传统的评估网络效率的指标,但它们对硬件(包括计算能力和内存带宽)不敏感。因此,如何设计一个神经网络以有效利用硬件的计算能力和内存带宽是一个关键问题。本文提出了一种设计硬件感知神经网络的方法。基于这种方法,我们设计了 EfficientRep 系列卷积网络,这些网络对高计算硬件(如 GPU)友好,并应用于 YOLOv6 目标检测框架。YOLOv6 已发布了 v1 和 v2 版本中的 YOLOv6N/YOLOv6S/YOLOv6M/YOLOv6L 模型。我们的 YOLOv6 代码可在 https://github.com/meituan/YOLOv6 获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

EfficientRep是一种高效的RepVGG风格卷积神经网络架构,旨在优化硬件的计算能力和内存带宽利用。该架构采用RepVGG风格的卷积结构,具有3x3卷积核,通过Winograd算法在GPU或CPU上进行高度优化。在训练状态下,EfficientRep结合了3x3分支、1x1分支和恒等映射,以确保训练期间的准确性。在推理状态下,通过重新参数化,多分支结构转换为单分支的3x3卷积。EfficientRep主要包括EfficientRep骨干网络和Rep-PAN颈部,这些结构对GPU友好,并应用于YOLOv6检测框架(YOLOv6-v1)[T3]。

在YOLOv6-v1中,EfficientRep骨干网络和Rep-PAN颈部的设计使得单GPU设备上的训练和推理速度得到提升。然而,当YOLOv6-v1扩展到中等规模时,推理速度下降过快,准确性也无法与CSP风格的YOLO系列相竞争。因此,为了在大型模型中实现更好的准确性和速度平衡,研究人员探索了多路径结构等新颖设计[T6]。

EfficientRep将在backbone中stride=2的卷积层换成了stride=2的RepConv层。并且也将CSP-Block修改为了RepBlock。

image-20240609095256534

核心代码


# 定义 RepBlock 类,继承自 nn.Module
class RepBlock(nn.Module):
    '''
        RepBlock 是一个包含多个 RepVGGBlock 的阶段块
    '''
    def __init__(self, in_channels, out_channels, n=1, isTrue=None):
        super().__init__()
        self.conv1 = RepVGGBlock(in_channels, out_channels)
        self.block = nn.Sequential(*(RepVGGBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None

    # 前向传播函数
    def forward(self, x):
        x = self.conv1(x)
        if self.block is not None:
            x = self.block(x)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139558834

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
106 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
1月前
|
机器学习/深度学习 人工智能 算法
深度解析:基于卷积神经网络的宠物识别
宠物识别技术随着饲养规模扩大而兴起,传统手段存在局限性,基于卷积神经网络的宠物识别技术应运而生。快瞳AI通过优化MobileNet-SSD架构、多尺度特征融合及动态网络剪枝等技术,实现高效精准识别。其在智能家居、宠物医疗和防走失领域展现广泛应用前景,为宠物管理带来智能化解决方案,推动行业迈向新高度。
|
14天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
230 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
275 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
4月前
|
机器学习/深度学习 自然语言处理 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
191 13
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干网络为 RMT,增强空间信息的感知能力
|
4月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
122 13
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR LSKNet (附网络详解和完整配置步骤)
|
4月前
|
机器学习/深度学习 计算机视觉 网络架构
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
338 12
RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
192 12
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为:Swin Transformer,提高多尺度特征提取能力
|
4月前
|
机器学习/深度学习 编解码 数据可视化
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)
243 11
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

热门文章

最新文章