基于FPGA的图像中值滤波开发,包括tb测试文件以及matlab验证代码

简介: 基于FPGA的图像中值滤波开发,包括tb测试文件以及matlab验证代码
  1. 算法运行效果图预览

117760504221a57f853bffd8a6b66293_82780907_202311141613420272866155_Expires=1699950222&Signature=jboIf%2FeQFXgbNYCSaFGg%2B5OskYs%3D&domain=8.png

通过MATLAB调用FPGA的仿真结果,显示滤波效果:
264cbe998afe06f1a5a8fdefd291ed0e_82780907_202311141614250850302362_Expires=1699950265&Signature=q7RKMuMlKH53TaRm8C2wIaAkwUc%3D&domain=8.png

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像中值滤波是一种在图像处理中常用的滤波技术,其原理是通过一定的算法将图像中的噪声平滑掉,同时尽量保留图像的细节信息。该技术主要应用于图像降噪、图像增强等领域。中值滤波是一种非线性信号处理技术,其原理是将图像中每个像素点的值设置为该点周围邻居像素值的中值。具体来说,对于一个像素点,其滤波后的值等于该点周围邻居像素值排序后的中间值。这种滤波方法可以有效去除图像中的椒盐噪声、孤立点等,同时能够保留图像的边缘信息。

    在基于FPGA的图像中值滤波中,FPGA作为硬件平台,可以实现高速的并行计算,从而提高滤波效率。通常,FPGA上会设计一个专门的中值滤波器模块,该模块包含了用于排序的比较器和存储器。

中值滤波的数学表达式为:

Median(f(x,y)) = median(g(x-i,y-j) for all i,j around (x,y)

其中,f(x,y)表示原始图像,g(x-i,y-j)表示滤波后的图像,i和j表示像素坐标。在实际应用中,通常采用滑动窗口的方式来实现中值滤波,窗口大小和步长可以根据实际需求进行调整。

基于FPGA的图像中值滤波开发主要包括以下几个步骤:

算法设计:根据需求选择合适的中值滤波算法,并根据FPGA的特点进行算法优化。

硬件设计:根据算法设计,使用硬件描述语言(如VHDL或Verilog)设计FPGA的硬件结构。

硬件仿真与验证:使用仿真工具对设计的硬件结构进行仿真验证,以确保其正确性和性能满足要求。

硬件实现:将设计的硬件结构下载到FPGA上,并进行实际测试和调试。

系统集成:将FPGA中实现的图像中值滤波模块集成到整个图像处理系统中,并进行系统测试和优化。

     总的来说,基于FPGA的图像中值滤波开发需要具备一定的硬件设计和图像处理知识,以及对FPGA开发流程的熟悉。在实际开发过程中,还需要根据具体需求进行算法优化和硬件设计优化,以提高系统的性能和稳定性。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] tmps [0:100000];
reg [7:0] Images;
wire [7:0] o_medfilter;
integer fids,idx=0,dat;

//D:\FPGA_Proj\FPGAtest\code\test0N.bmp 路径改为自己的路径

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code\test0N.bmp","rb");
dat = $fread(tmps,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
Images<=tmps[idx];
idx<=idx+1;
end

med_filter med_filter_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_images (Images),
.o_medfilter(o_medfilter)
);

integer fout1;
initial begin
fout1 = $fopen("medfilter.txt","w");
end

always @ (posedge i_clk)
begin
if(idx<=67131)
$fwrite(fout1,"%d\n",o_medfilter);
else
$fwrite(fout1,"%d\n",0);
end

endmodule

```

相关文章
|
1天前
|
缓存 监控 前端开发
【Flutter前端技术开发专栏】Flutter应用的性能调优与测试
【4月更文挑战第30天】本文探讨了Flutter应用的性能调优策略和测试方法。性能调优对提升用户体验、降低能耗和增强稳定性至关重要。优化布局(避免复杂嵌套,使用`const`构造函数)、管理内存、优化动画、实现懒加载和按需加载,以及利用Flutter的性能工具(如DevTools)都是有效的调优手段。性能测试包括基准测试、性能分析、压力测试和电池效率测试。文中还以ListView为例,展示了如何实践这些优化技巧。持续的性能调优是提升Flutter应用质量的关键。
【Flutter前端技术开发专栏】Flutter应用的性能调优与测试
|
1天前
|
前端开发 测试技术 持续交付
【Flutter 前端技术开发专栏】Flutter 中的 UI 测试与自动化测试
【4月更文挑战第30天】本文探讨了 Flutter 应用中UI测试和自动化测试的重要性,包括保障质量、提高效率和增强开发信心。Flutter提供`flutter_test`库进行Widget测试,以及`flutter_driver`进行集成测试。UI测试涵盖界面布局、交互和状态变化的验证,最佳实践建议尽早引入测试、保持用例简洁,并结合手动测试。未来,随着Flutter技术发展,UI测试和自动化测试将更加完善,助力开发高质量应用。
【Flutter 前端技术开发专栏】Flutter 中的 UI 测试与自动化测试
|
1天前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到&quot;result.txt&quot;以供MATLAB显示图像分割效果。
|
2天前
|
SQL DataWorks Java
DataWorks操作报错合集之在阿里云 DataWorks 中,代码在开发测试阶段能够成功运行,但在提交后失败并报错“不支持https”如何解决
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
13 1
DataWorks操作报错合集之在阿里云 DataWorks 中,代码在开发测试阶段能够成功运行,但在提交后失败并报错“不支持https”如何解决
|
4天前
|
测试技术 开发者
【专栏】测试驱动开发(TDD)与行为驱动开发(BDD)的比较与选择
【4月更文挑战第27天】本文探讨了测试驱动开发(TDD)和行为驱动开发(BDD)的核心概念与实践。TDD强调先写测试用例,通过测试推动设计,确保代码质量与可维护性。BDD侧重软件行为和业务价值,提倡使用通用语言描述行为,减少沟通障碍。选择TDD或BDD取决于项目复杂性、团队技能和业务需求。理解两者差异有助于团队做出合适的选择,发挥测试的最大价值。
|
10天前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
28 7
|
3月前
|
算法 异构计算
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench
|
2月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
29 2
|
4月前
|
算法 5G 数据处理
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
m基于FPGA的PPM光学脉位调制解调系统verilog实现,包含testbench
48 0
|
4月前
|
算法 异构计算 索引
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
m基于FPGA的Hamming汉明编译码verilog实现,包含testbench测试文件,不使用IP核
45 1

热门文章

最新文章