冒泡排序算法的实现和优化~

简介: 冒泡排序算法的实现和优化~

冒泡排序算法:

算法思想:

反复扫描待排序记录序列,在扫描的过程中,顺次比较相邻的两个元素的大小,若逆序就交换位置

文字描述该算法:

以升序为例:

依次比较数组中相邻两个元素大小,若a[j]>a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后,重复该步骤,直至整个数组称为一个升序数组

初步实现:

package bin_find;
import java.util.Arrays;
public class bubble_sorted {
    public static void main(String[] args) {
        int arr[]={3,19,10,21,1,87,55,34};
        bubble(arr);
    }
    //冒泡排序的过程
    public static void bubble(int[] arr){
        //本次冒泡排序的目的是将数组的元素从小到大排序
        for(int j=0;j<arr.length-1;j++) {//控制要进行冒泡排序的次数--->n个数进行冒泡排序需要进行n-1轮
            for (int i = 0; i < arr.length - 1; i++){//一次for完成一轮排序
                if (arr[i] > arr[i + 1]) {//前者大于后者--->交换位置
                    swap(arr, i, i + 1);
                }
                 System.out.println("比较的次数为"+(i+1));
            }
            System.out.println("第"+(j+1)+"轮冒泡排序结果"+Arrays.toString(arr));
        }
    }
    //冒泡排序----核心算法
    public static void swap(int[] a,int i,int j){
        int t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}

输出如下所示:

比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第1轮冒泡排序结果[3, 10, 19, 1, 21, 55, 34, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第2轮冒泡排序结果[3, 10, 1, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第3轮冒泡排序结果[3, 1, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第4轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第5轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第6轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第7轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]

优化版本1:减少冒泡次数

方法如下:

输出:

比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第1轮冒泡排序结果[3, 10, 19, 1, 21, 55, 34, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
第2轮冒泡排序结果[3, 10, 1, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
第3轮冒泡排序结果[3, 1, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
第4轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
第5轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
第6轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
第7轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]


优化版本2:减少比较次数

方式1:

对于第一次到的优化输出结果,细心的小伙伴应该都发现了,其实第五次数组就已经是有序数组了,而最后两次元素之间的次序并没有任何的变化,这无疑增加了不必要的比较次数,那么接下来,我们通过判断该数组是否还存在元素交换,进而去确定,它是否需要进行下一轮的排序。


代码如下:

package bin_find;
import java.util.Arrays;
public class bubble_sorted {
    public static void main(String[] args) {
        int arr[]={3,19,10,21,1,87,55,34};
        bubble(arr);
    }
    //冒泡排序的过程
    public static void bubble(int[] arr){
        for(int j=0;j<arr.length-1;j++) {
            boolean swapped=false;
            for (int i = 0; i < arr.length - 1-j; i++){
                if (arr[i] > arr[i + 1]) {
                    swap(arr, i, i + 1);
                    swapped=true;//只要某一轮中有进行交换的现象----将该变量设置为true
                }
                System.out.println("比较的次数为"+(i+1));
            }
            System.out.println("第"+(j+1)+"轮冒泡排序结果"+Arrays.toString(arr));
            //若swapped此时还为false:说明一轮冒泡结束,没有任何的两个元素发生交换---说明该数组已经变为有序数组
            if (!swapped){
                break;
            }
        }
    }
    //冒泡排序----核心算法
    public static void swap(int[] a,int i,int j){
        int t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}

输出如下:

比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第1轮冒泡排序结果[3, 10, 19, 1, 21, 55, 34, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
第2轮冒泡排序结果[3, 10, 1, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
第3轮冒泡排序结果[3, 1, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
第4轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]
比较的次数为1
比较的次数为2
比较的次数为3
第5轮冒泡排序结果[1, 3, 10, 19, 21, 34, 55, 87]

对比第一次的优化结果,我们会发现,比较次数整整少了两次,这里我们的好像还不能完全体现出该优化的优点,但是在原本就是有序数组的情况下,我们就能够体会到这个优点

举例:

对于任意的有序数组:

int arr[]={1,2,3,4,5,6,7,8};

输出如下:

它只比较了一次!

比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
第1轮冒泡排序结果[1, 2, 3, 4, 5, 6, 7, 8]

方式2:

对于某些数组,当第一轮排序过后,可能不仅是一个元素到达了最终的位置,也许是好几个,如下所示的这种情况:

当第一轮比较完成之后,我们会发现元素7 8 9都已经到达了最终的位置,那么第二轮乃至以后在比较的过程中,大可不必比较这三个元素的的大小,但是我们要怎么才能实现呢?


优化方式为:每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为0,表示整个数组有序,直接退出外层循环,结束冒泡排序


拿上面这种情况解释,也就是说,下一次,我们第一轮结束之际,需要记录元素3的索引,也就是4,第二轮比较的时候,只需要将前五个元素一一进行比较。

代码如下:

package bin_find;
import java.util.Arrays;
public class bubble_sorted {
    public static void main(String[] args) {
        int arr[]={5,2,7,4,1,3,8,9};
        bubble(arr);
    }
    //冒泡排序的过程
    public static void bubble(int[] arr){
        int n=arr.length-1;
        while (true){
            //用于记录最后一次交换时,较小索引的值,由于last的值在不断的变化,因此使用变量n进行记录
            int last=0;
            for (int i = 0; i < n; i++){//n即为下一次参与比较的元素个数,即为本轮last的值
                if (arr[i] > arr[i + 1]) {
                    swap(arr, i, i + 1);
                    last=i;//由于是较小索引的值,因此将i赋值给last,而不是i+1
                }
                System.out.println("比较的次数为"+(i+1));
            }
            System.out.println("冒泡排序结果"+Arrays.toString(arr));
            n=last;
            if (n==0){//表示结束排序
                break;
            }
        }
    }
    //冒泡排序----核心算法
    public static void swap(int[] a,int i,int j){
        int t=a[i];
        a[i]=a[j];
        a[j]=t;
    }
}

输出如下:

我们会发现第二次只比较了4次,也就是前5个元素参与比较并进行排序了

比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
比较的次数为5
比较的次数为6
比较的次数为7
冒泡排序结果[2, 5, 4, 1, 3, 7, 8, 9]
比较的次数为1
比较的次数为2
比较的次数为3
比较的次数为4
冒泡排序结果[2, 4, 1, 3, 5, 7, 8, 9]
比较的次数为1
比较的次数为2
比较的次数为3
冒泡排序结果[2, 1, 3, 4, 5, 7, 8, 9]
比较的次数为1
比较的次数为2
冒泡排序结果[1, 2, 3, 4, 5, 7, 8, 9]
相关文章
|
3天前
|
搜索推荐 算法 Java
Java数据结构与算法:排序算法之冒泡排序
Java数据结构与算法:排序算法之冒泡排序
|
5天前
|
存储 缓存 算法
Python中常用的数据结构与算法优化技巧指南
Python是一种强大而灵活的编程语言,它提供了丰富的数据结构和算法库,但是在处理大规模数据或者需要高效运行的情况下,需要考虑一些优化技巧。本文将介绍一些Python中常用的数据结构与算法优化技巧,并附带代码实例,帮助你更好地理解和运用。
|
3天前
|
机器学习/深度学习 存储 算法
基于SFLA算法的神经网络优化matlab仿真
**摘要:** 使用MATLAB2022a,基于SFLA算法优化神经网络,降低训练误差。程序创建12个神经元的前馈网络,训练后计算性能。SFLA算法寻找最优权重和偏置,更新网络并展示训练与测试集的预测效果,以及误差对比。SFLA融合蛙跳与遗传算法,通过迭代和局部全局搜索改善网络性能。通过调整算法参数和与其他优化算法结合,可进一步提升模型预测精度。
|
22小时前
|
算法
基于PSO粒子群优化的PID控制器参数整定算法matlab仿真
该文探讨了使用PSO(粒子群优化)算法优化PID控制器参数的方法。通过PSO迭代,不断调整PID控制器的Kp、Ki、Kd增益,以减小控制误差。文中提供了MATLAB2022a版本的核心代码,展示了参数优化过程及结果。系统仿真图像显示了参数随迭代优化的变化。PID控制器结合PSO算法能有效提升控制性能,适用于复杂系统的参数整定,未来研究可关注算法效率提升和应对不确定性。
|
1天前
|
算法
m基于GA遗传优化的高斯白噪声信道SNR估计算法matlab仿真
**MATLAB2022a模拟展示了遗传算法在AWGN信道中估计SNR的效能。该算法利用生物进化原理全局寻优,解决通信系统中复杂环境下的SNR估计问题。核心代码执行多代选择、重组和突变操作,逐步优化SNR估计。结果以图形形式对比了真实SNR与估计值,并显示了均方根误差(RMSE),体现了算法的准确性。**
8 0
|
2天前
|
机器学习/深度学习 算法
机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略
【6月更文挑战第28天】**机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略。工具如scikit-optimize、Optuna助力优化,迁移学习和元学习提供起点,集成方法则通过多模型融合提升性能。资源与时间考虑至关重要,交叉验证和提前停止能有效防止过拟合。**
5 0
|
3天前
|
算法 vr&ar
技术好文共享:遗传算法解决函数优化
技术好文共享:遗传算法解决函数优化
|
3天前
|
机器学习/深度学习 算法 大数据
操作系统调度算法的演变与优化
在计算机科学领域中,操作系统的调度算法是核心的研究课题之一。本文深入探讨了操作系统调度算法的发展历程、当前挑战以及未来趋势。通过引用最新的科研数据和实验证据,本文旨在揭示调度算法如何适应现代计算需求的变化。我们将从理论到实践,详细分析不同调度算法的性能表现,并讨论如何利用这些算法来提升系统的整体效率和响应速度。
2 0
|
4天前
|
算法 调度
【完全复现】基于改进粒子群算法的微电网多目标优化调度
该文档描述了一个使用改进粒子群算法实现的微电网多目标优化调度的Matlab程序。该模型旨在最小化运行成本和环境保护成本,将多目标问题通过权值转换为单目标问题解决。程序中定义了决策变量,如柴油发电机、微型燃气轮机、联络线和储能的输出,并使用全局变量处理电负荷、风力和光伏功率等数据。算法参数包括最大迭代次数和种群大小。代码调用了`PSOFUN`函数来执行优化计算,并展示了优化结果的图表。
|
5天前
|
搜索推荐 算法 大数据
​【数据结构与算法】冒泡排序:简单易懂的排序算法解析
​【数据结构与算法】冒泡排序:简单易懂的排序算法解析