交通标志识别系统python+TensorFlow+算法模型+Django网页+数据集

简介: 交通标志识别系统python+TensorFlow+算法模型+Django网页+数据集

一、介绍

交通标志识别系统。技术涉及:

  • Python编程语言开发
  • TensorFlow搭建算法模型对数据集进行训练得到一个精度较高的模型文件
  • Django开发网页端界面平台
  • 实现对58种交通标志图片进行识别

二、效果图片展示

img_05_12_21_34_14.jpg
img_05_12_21_35_01.jpg

三、演示视频 and 代码

视频+代码+介绍:https://s7bacwcxv4.feishu.cn/wiki/NZWIwBgDyig8hakbMJMcjNOwndc

四、卷积神经网络介绍

下面提供一个简单的卷积神经网络(CNN)模型,以及如何在TensorFlow 2.x上使用它进行图像分类。这里,我们假设您使用的是MNIST数据集,这是一个手写数字分类的数据集。

  1. 导入所需的库:
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models, datasets
  1. 加载和预处理MNIST数据集:
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()

# 将图片数据规范化到0和1之间
train_images = train_images.reshape((60000, 28, 28, 1)).astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float32') / 255

# 将标签进行One-hot编码
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
  1. 构建CNN模型:
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

这里简单解释下上述模型的结构:

  • Conv2D: 2D卷积层,用于图像上的空间卷积。
  • MaxPooling2D: 最大池化层,用于降低空间数据的维度。
  • Flatten: 将前面的多维输出展平为一维。
  • Dense: 完全连接的神经网络层。
  1. 编译并训练模型:
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels))
  1. 评估模型:
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

当您运行上述代码时,您会得到一个在MNIST数据集上训练的CNN模型,并得到测试集的准确率。这只是一个基本的示例,您可以根据需要调整模型的参数和结构。

目录
相关文章
|
2月前
|
人工智能 自然语言处理 算法
算法及模型合规:刻不容缓的企业行动指南
随着AI技术迅猛发展,算法与模型成为企业数字化转型的核心。然而,国家密集出台多项法规,如《人工智能生成合成内容标识办法》等,并开展“清朗·整治AI技术滥用”专项行动,标志着AI监管进入严格阶段。算法备案从“可选项”变为“必选项”,未合规可能面临罚款甚至刑事责任。同时,多地提供备案奖励政策,合规既是规避风险的需要,也是把握政策红利和市场信任的机遇。企业需系统规划合规工作,从被动应对转向主动引领,以适应AI时代的挑战与机遇。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
3月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
174 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
144 6
|
4月前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
5月前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
138 21
|
5月前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
6月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1008 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
17天前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
40 1
|
8月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
500 45

热门文章

最新文章

推荐镜像

更多