用 AI 修复亚运珍贵史料——基于Stable Diffusion WebUI 体验AIGC加持的修复能力

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动(以下简称“本活动”),开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展—— 1974 年德黑兰亚运会特展”。

用 AI 修复亚运珍贵史料——基于Stable Diffusion WebUI 体验AIGC加持的修复能力

大家好,我是博主Lingxw_w!在开始介绍我的修复之前,首先看一下我生成的照片:
image.png
image.png

1、背景介绍

2023年,正值亚运110周年,也是第19届杭州亚运会即将举办之际,阿里云与亚奥理事会合作,发起“历久弥新——用 AI 修复亚运会珍贵史料”活动(以下简称“本活动”),开发者使用阿里云的 AI 技术对亚运会历史老照片进行修复,重燃亚运经典,为亚运助威,并有机会入选“亚运史上第一个 AI 修复特展—— 1974 年德黑兰亚运会特展”。今天使用开源社区的高质量图像修复、去噪、上色等算法,并使用 Stable Diffusion WebUI 进行交互式图像修复。

2、领取对应的试用产品

在活动当前页领取对应的产品,准备环境和资源;
image.png
我申请试用的是PAI-DSW免费资源包,当前可申请免费使用的资源类型有:ecs.gn6v-c8g1.2xlarge、ecs.g6.xlarge、ecs.gn7i-c8g1.2xlarge。
image.png
image.png

开通成功后单击进入PAI控制台,在默认工作空间中创建DSW实例。
image.png

创建实例:
image.png
选择官方镜像中的stable-diffusion-webui-env:pytorch1.13-gpu-py310-cu117-ubuntu22.04。
image.png
注意这里不用添加VPC、并且实例的名字不要和教程中的一样,否则会报错。

3、修复步骤

3.1图形去噪

进入PAI-DSW开发环境。
image.png
打开:
image.png
基于Modelscope实现:https://www.modelscope.cn/models?name=nafnet&page=1

! pip install modelscope
download_from_oss('aigc-data/restoration/repo/','nafnet.zip')

根据需要运行合适的推理任务

# 去模糊
!python NAFNet/demo.py --task deblur --input_dir input --result_dir results
# 去噪
!python NAFNet/demo.py --task denoise --input_dir input --result_dir results
# 去运动模糊
!python NAFNet/demo.py --task de_motion_blur --input_dir input --result_dir results

image.png
查看结果:
image.png

3.2图像超分

这部分使用的是RealESRGAN 算法;该算法发表于ICCV workshop 2021 用于对图像超分。
该算法提供3个预训练模型:
-RealESRNet_x4plus:基础预模型
-RealESRGAN_x4plus:用GAN Loss训练的RealESRNet
-RealESRGAN_x4plus_anime_6B用动漫数据集微调过的RealESRGAN_x4plus

download_from_oss('aigc-data/restoration/repo/','realesrgan.zip')
# 动漫微调模型
!python Real-ESRGAN/demo.py --model_name RealESRGAN_x4plus_anime_6B --input input/ --output results --tile 512
# realesrgan
!python Real-ESRGAN/demo.py --model_name RealESRGAN_x4plus --input input/ --output results --tile 512
# realesrnet 基础模型
!python Real-ESRGAN/demo.py --model_name RealESRNet_x4plus --input input/ --output results --tile 512

完成图形超分。
image.png

3.3上色

基于Modelscope,使用不同的算法进行图像上色及色彩增强。
DDC:https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary
DDC发表于 ICCV 2023,色彩鲜艳

! pip install modelscope
download_from_oss('aigc-data/restoration/repo/','color.zip')
# DDC no enhance
!python Colorization/demo.py --algo DDC --input_dir input --result_dir results

# DDC with enhance
!python Colorization/demo.py --algo DDC --input_dir input --result_dir results --use_enhance

# DeOldify no enhance
!python Colorization/demo.py --algo DeOldify --input_dir input --result_dir results

# DeOldify with enhance
!python Colorization/demo.py --algo DeOldify --input_dir input --result_dir results --use_enhance

完成DDC的图像上色;
image.png
image.png

3.4局部重绘

通过Unicolor+SAM的有条件的上色方案,我们可以指定修改位置即颜色,对局部颜色细节进行调整。下载代码及预训练文件:

# 下载/解压 约10min
download_from_oss('aigc-data/restoration/repo/','sam_unicolor.zip')

加载模型文件和待处理的图片;

import os
import cv2
from PIL import Image
import numpy as np
from unicolor.sample.colorizer import Colorizer
from unicolor.sample.utils_func import *
from unicolor.sample.SAM.segment_anything import sam_model_registry, SamPredictor
import sys
import numpy as np

读取上色前的黑白图片以及通过上述无参考的DDC/DeOldify获取的上色图片,并画出坐标系方便选取参考点和参考格

#读取和初始化SAM和Unicolor模型
device = "cuda"
sam_checkpoint = 'unicolor/sample/sam_vit_h_4b8939.pth'
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)


ckpt_file = 'unicolor/framework/checkpoints/unicolor_mscoco/mscoco_step259999'
colorizer = Colorizer(ckpt_file, device, [256, 256], load_clip=True, load_warper=True) # it will change the workdir
os.chdir('../../') # change back

image.png

4、总结、

在这个活动中,充分发挥了阿里云的先进AI技术,对亚运会的珍贵历史照片进行修复和重制。这一过程包括超分辨率处理,去除噪声,上色以及局部重绘等四个关键步骤。通过这些步骤,亚运会的老照片焕发出崭新的生机,重新展现了历史瞬间的细节和色彩。

修复后的照片不仅让人们能够更清晰地看到过去的辉煌瞬间,还让年轻一代更深入地了解亚运历史的丰富内涵。这个活动也唤起了人们对亚运会的热情,为即将到来的第19届杭州亚运会增添了更多的期待和助威声。

此次活动的成功展示了科技和体育的结合,以及人工智能在文化保护和传承方面的巨大潜力。阿里云与亚奥理事会的合作为亚运会的持续发展和传承注入了新的动力,同时也将亚运历史的珍贵财富分享给更多人。我们期待着在未来看到更多这样的创新举措,将亚运的光辉历史传承下去,继续激发人们对体育和文化的热爱。

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
相关文章
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
「AIGC」Agent AI智能体的未来:技术、伦理与经济的交汇点
Agent AI智能体融合机器学习与深度学习,推动社会效率与创新,但也引发伦理、法律及就业挑战。技术上,它们能自我优化、积累知识,如自动驾驶汽车通过学习改善驾驶。伦理上,需建立AI准则,确保透明度和责任归属,如医疗AI遵循道德原则。经济上,AI改变就业市场结构,创造新职业,如AI顾问,同时要求教育体系更新。未来,平衡技术进步与社会影响至关重要。
577 0
|
18天前
|
人工智能
🎨 设计师必备!AI Stable Diffusion 提示词神器,让你秒变创意大师!
AI绘图新时代来临,设计师必备工具——**白盒子AI绘图提示词生成器**助你轻松跨越提示词难题。该工具操作简便,支持中英文切换,涵盖近1000个精选提示词,适用于各种风格创作。无论是新手还是专业设计师,都能大幅提升工作效率,快速实现创意构想。网址:[https://www.baihezi.com/ai-painting-prompt](https://www.baihezi.com/ai-painting-prompt)
95 19
🎨  设计师必备!AI Stable Diffusion 提示词神器,让你秒变创意大师!
|
1月前
|
人工智能 UED
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
VersaGen 是一款生成式 AI 代理,专注于文本到图像合成中的视觉控制能力,支持多种视觉控制类型,并通过优化策略提升图像生成质量和用户体验。
47 8
VersaGen:生成式 AI 代理,基于 Stable Diffusion 生成图像,专注于控制一至多个视觉主体等生成细节
|
2月前
|
人工智能 程序员 Linux
神秘山洞惊现AI绘画至宝Stable Diffusion残卷
随着AI神器的现世,不少修士担忧其会取代人类职业。然而,自女娲创造人类以来,法宝虽强,始终只是辅助工具,需修士操控才能发挥威力。如今修仙界最大的至宝是GPT,它能以文字为引,转化出所需答案。图片处理方面也有Stable Diffusion、DALL-E等法宝。这些AI工具并非替代修士,而是提升效率的助手。例如,Stable Diffusion最初由慕尼黑和海德堡大学宗师炼制,现已发展多个版本,如v1、v2.0、SDXL等,帮助修士更便捷地生成图像。通过合理使用这些工具,修士们可以更好地实现心中所想,而非被技术取代。
47 6
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
|
4月前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
5月前
|
人工智能 物联网 开发者
魔搭上线AIGC专区,为开发者提供一站式AI创作开发平台
魔搭上线AIGC专区,首批上架157个风格化大模型,专业文生图全免费~
180 16
|
5月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
107 7
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC:人工客服耗钱耗力!AI客服才是版本答案!
AIGC:人工客服耗钱耗力!AI客服才是版本答案!
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC-基于EAS服务快速部署一个AI视频生成
AIGC-基于EAS服务快速部署一个AI视频生成

热门文章

最新文章