元象开源70 亿参数通用大模型 XVERSE-7B,全开源、免费可商用,魔搭最佳实践来啦!

简介: 元象推出 70 亿参数通用大模型 XVERSE-7B 底座与对话版,保持高性能、全开源、免费可商用,让海量中小企业和 AI 开发者能以低成本用上高性能大模型,并在魔搭社区开源,共同推动中国大模型生态建设。

导读


元象推出 70 亿参数通用大模型 XVERSE-7B 底座与对话版,保持高性能、全开源、免费可商用,让海量中小企业和 AI 开发者能以低成本用上高性能大模型,并在魔搭社区开源,共同推动中国大模型生态建设。


与 8 月开源的 XVERSE-13B 相比,7B 版本主打“小而美”:它支持在单张消费级显卡部署运行,推理量化后最低只需 6GB 显存,大幅降低开发门槛和推理成本;继续保持高性能,在多个权威基准测评中表现出色,部分能力还“跳级”赶超了13B、16B等更大尺寸模型。

使用 5 shot 方法测试

在多项权威测试中表现出色


XVERSE-7B 是在 2.6 万亿 tokens 高质量多语言数据上从头训练的底座模型,具有强大的认知、规划、推理和记忆能力。其上下文窗口长度为 8192 ,支持中、英、俄、法等40多种语言。


XVERSE-7B-Chat 是底座模型经 SFT 指令精调后的中英文对话模型,大幅提升了理解和生成内容的准确度,也更符合人类的认知偏好。


元象通用大模型 XVERSE 系列


环境配置与安装


  1. python 3.8及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上(GPU用户需考虑此选项)


使用步骤

本文在ModelScope的免费GPU环境配置下运行 (可单卡运行)


模型链接和下载


元象XVERSE系列模型现已在ModelScope社区开源,包括:


XVERSE-7B:

https://modelscope.cn/models/xverse/XVERSE-7B


XVERSE-7B-Chat:

https://modelscope.cn/models/xverse/XVERSE-7B-Chat


XVERSE-13B:

https://modelscope.cn/models/xverse/XVERSE-13B


XVERSE-13B-Chat:

https://modelscope.cn/models/xverse/XVERSE-13B-Chat


社区支持直接下载模型的repo:

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('xverse/XVERSE-7B-Chat', 'v1.0.0')


模型推理


依赖项:

XVERSE-7B-Chat依赖项:


pip install "modelscope==1.8.1"


推理代码:

XVERSE-7B-Chat可在魔搭社区免费GPU算力(单卡A10)运行:

import torch
from modelscope import AutoTokenizer, AutoModelForCausalLM,snapshot_download
from modelscope import GenerationConfig
model_dir = snapshot_download('xverse/XVERSE-7B-Chat',revision = 'v1.0.0')
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model.generation_config = GenerationConfig.from_pretrained(model_dir)
model = model.eval()
history = [{"role": "user", "content": "1955年谁是美国总统?他是什么党派?"}]
response = model.chat(tokenizer, history)
print(response)
history.append({"role": "assistant", "content": response})
history.append({"role": "user", "content": "他任职了多少年"})
response = model.chat(tokenizer, history)
print(response)

资源消耗:



模型微调和微调后推理


微调代码开源地址:

clone swift仓库并安装swift

git clone https://github.com/modelscope/swift.git
cd swift
pip install .
cd examples/pytorch/llm


微调案例

模型微调脚本 (qlora)

# Experimental environment: 3090
# 12GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
python src/llm_sft.py \
    --model_type xverse-13b \
    --sft_type lora \
    --template_type default-generation \
    --dtype bf16 \
    --output_dir output \
    --dataset advertise-gen \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 2048 \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype bf16 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0. \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0. \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps 16 \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --push_to_hub false \
    --hub_model_id xverse-13b-qlora \
    --hub_private_repo true \
    --hub_token 'your-sdk-token' \


模型微调后的推理脚本

# If you want to merge LoRA weight and save it, you need to set `--merge_lora_and_save true`.
CUDA_VISIBLE_DEVICES=0 \
python src/llm_infer.py \
    --model_type xverse-13b \
    --sft_type lora \
    --template_type default-generation \
    --dtype bf16 \
    --ckpt_dir "output/xverse-13b/vx_xxx/checkpoint-xxx" \
    --eval_human false \
    --dataset advertise-gen \
    --max_length 2048 \
    --quantization_bit 4 \
    --bnb_4bit_comp_dtype bf16 \
    --max_new_tokens 1024 \
    --temperature 0.9 \
    --top_k 20 \
    --top_p 0.9 \
    --do_sample true \
    --merge_lora_and_save false \


资源消耗

使用 QLoRA 的方式训练的显存占用如下,大约在11G.



点击直达魔搭社区模型详情:https://modelscope.cn/models/xverse/XVERSE-7B/summary

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
5月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
505 2
|
6月前
|
人工智能 算法 开发者
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
591 10
开源VLM“华山论剑”丨AI Insight Talk多模态专场直播预告
|
5月前
|
机器学习/深度学习 数据采集 人工智能
通义实验室Mobile-Agent-v3开源,全平台SOTA的GUI智能体,支持手机电脑等多平台交互
近日,通义实验室MobileAgent团队正式开源全新图形界面交互基础模型 GUI-Owl,并同步推出支持多智能体协同的自动化框架 Mobile-Agent-v3。该模型基于Qwen2.5-VL打造,在手机端与电脑端共8个GUI任务榜单中全面刷新开源模型性能纪录,达成全平台SOTA。
1750 2
|
6月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
719 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
5月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
2371 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
6月前
智谱发布GLM-4.5V,全球开源多模态推理新标杆,Day0推理微调实战教程到!
视觉语言大模型(VLM)已经成为智能系统的关键基石。随着真实世界的智能任务越来越复杂,VLM模型也亟需在基本的多模态感知之外,逐渐增强复杂任务中的推理能力,提升自身的准确性、全面性和智能化程度,使得复杂问题解决、长上下文理解、多模态智能体等智能任务成为可能。
966 0
|
6月前
|
编解码 算法 测试技术
MiniCPM-V4.0开源,多模态能力进化,手机可用,还有最全CookBook!
今天,面壁小钢炮新一代多模态模型 MiniCPM-V 4.0 正式开源。依靠 4B 参数,取得 在 OpenCompass、OCRBench、MathVista 等多个榜单上取得了同级 SOTA 成绩,且 实现了在手机上稳定、丝滑运行。此外,官方也正式开源了 推理部署工具 MiniCPM-V CookBook,帮助开发者面向不同需求、不同场景、不同设备,均可实现开箱即用的轻量、简易部署。
947 0
|
6月前
|
人工智能 算法 测试技术
轻量高效,8B 性能强劲书生科学多模态模型Intern-S1-mini开源
继 7 月 26 日开源『书生』科学多模态大模型 Intern-S1 之后,上海人工智能实验室(上海AI实验室)在8月23日推出了轻量化版本 Intern-S1-mini。
895 50

热门文章

最新文章