阿里巴巴开源可控视频生成框架VideoComposer!(内含体验、推理实践干货)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 8月16日,时间、空间可控的视频生成模型 VideoComposer 在魔搭社区开源。

导读

8月16日,时间、空间可控的视频生成模型 VideoComposer  在魔搭社区开源。

https://live.csdn.net/v/322097


VideoComposer是由阿里巴巴研发的可控视频生成框架,其可以让用户更灵活地使用文本条件、空间条件和时序条件来生成视频,比如使用草图、深度图或运动向量等多个组合条件合成目标视频,极大地提高了视频灵活性和可控性。本项目相比于之前的开源项目主要增加了无水印数据训练,可使得生成的视频没有水印。此外,本项目目前只支持文本+深度图+Style方便体验。image.png

模型介绍

VideoComposer采用组合式生成策略,旨在提升视频生成的可控性,包括两个部分:

组合条件,首先将视频分解成三种重要的要素,即文本条件、空间条件和视频特有时序条件,分表表示视频的概要内容、空间布局和细节以及运动模式,以此重构该视频。在训练过程中,通过按照特定概率随机Mask部分条件,使得VideoComposer具有随机组合任意条件以控制视频生成

时空条件编码器STC-encoder,由空间卷集提取空间特征,时序Transformer对输入条件做时序编码两部分构成,其作为统一接口策略可以编码多个条件以生成更高稳定的视频,并可以更容易地拓展到其他的条件

环境配置与安装

本文在1*A10的环境配置下运行 (显存要求22G)

python>=3.8

实验环境准备

选择ModelScope Notebook免费实例PAI-DSW。选择GPU环境,镜像如下(要选择torch1.11.0的镜像):

image.png

安装最新ModelScope

打开Notebook,在Terminal中运行代码:

pip install "modelscope" --upgrade -f https://pypi.org/project/modelscope/

安装依赖库

pip install motion-vector-extractor>=1.0.6
pip install scikit-video>=1.1.11
pip install pynvml>=11.5.0
pip install numpy==1.24.2
pip install bitsandbytes==0.38.1

模型链接及下载

VideoComposer 模型链接:

https://modelscope.cn/models/damo/VideoComposer/summary

模型weights下载

VideoComposerfrom modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/VideoComposer', cache_dir='model_weights/', revision='v1.0.4')

模型推理

环境配置完成后,打开Notebook:

import cv2
import sys
from modelscope.msdatasets import MsDataset
from modelscope.pipelines import pipeline
from modelscope.utils.constant import DownloadMode, Tasks
sys.argv = ['run.py']

导入pipeline:

pipe = pipeline(
    task=Tasks.text_to_video_synthesis,
    model='damo/VideoComposer',
    model_revision='v1.0.4',
    download_mode=DownloadMode.FORCE_REDOWNLOAD)

载入测试样例,输入由三个部分组成:

  • 视频,待编辑视频,建议主体目标显著,居中;
  • 风格图,选一张期望的风格图,风格显著时会,效果会好一些;
  • 文本,描述期望输出的视频对应的文本,VideoComposer可以做一定的目标转换;
ds = MsDataset.load(
    'buptwq/videocomposer-depths-style',
    split='train',
    download_mode=DownloadMode.FORCE_REDOWNLOAD)

推理:

inputs = next(iter(ds))
inputs.update({
    'text':
    'A glittering and translucent fish swimming in a small glass bowl with multicolored piece of stone, like a glass fish'
})
print('inputs: ', inputs)
output = pipe(inputs)

输出文件保存在outputs/rank.gif。

您也可以通过以下方式测试自己的数据:

image_in = '<image路径>'
video_in = '<video路径>'
text_in = '<文字描述>'
inputs = {'Image:FILE': image_in, 'Video:FILE': video_in, 'text':text_in}
print('inputs: ', inputs)
output = pipe(inputs)

关于模型更多的能力,可以将源码中的‘non_ema_228000.pth’替换成本项目中的‘non_ema_141000_no_watermark.pth’,即可体验无水印的运动迁移、草图生成视频、风格转换等其他多项能力,欢迎开发者的尝试和建议。

创空间体验

VideoComposer Demo创空间链接:

https://modelscope.cn/studios/damo/VideoComposer-Demo/summary

image.png

https://modelscope.cn/studios/damo/VideoComposer-Demo/summary

相关文章
|
19天前
|
自然语言处理 监控 API
"阿里云ModelScope深度测评:从预训练模型到一键部署,揭秘高效模型开发背后的秘密,开发者必备利器!"
【10月更文挑战第23天】阿里云ModelScope是一款便捷的模型开发、训练、部署和应用平台。它提供丰富的预训练模型,涵盖自然语言处理、计算机视觉等领域,支持一键式模型训练和部署,具备模型版本管理和监控功能,显著降低开发门槛,提高模型应用效率。
41 0
|
19天前
|
监控 安全 Serverless
"揭秘D2终端大会热点技术:Serverless架构最佳实践全解析,让你的开发效率翻倍,迈向技术新高峰!"
【10月更文挑战第23天】D2终端大会汇聚了众多前沿技术,其中Serverless架构备受瞩目。它让开发者无需关注服务器管理,专注于业务逻辑,提高开发效率。本文介绍了选择合适平台、设计合理函数架构、优化性能及安全监控的最佳实践,助力开发者充分挖掘Serverless潜力,推动技术发展。
41 1
|
3月前
|
人工智能 PyTorch 算法框架/工具
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
【8月更文挑战第6天】Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
Xinference实战指南:全面解析LLM大模型部署流程,携手Dify打造高效AI应用实践案例,加速AI项目落地进程
|
6月前
|
机器学习/深度学习 人工智能 安全
算子开发到推理加速,一位00后开发者的“升级打怪”之旅
郑辉,从大四学生到资深AI开发者,他的成长轨迹映射了中国AI生态的繁荣。他独立开发的NonZero算子被纳入CANN主线,参与的深度学习框架降低了大模型训练门槛。在昇腾AI生态中,郑辉们正助力大模型发展。从初次接触分布式机器学习到优化算子,再到参与大模型推理加速项目,郑辉在实践中不断成长,他的工作有望帮助开发者更高效地部署在线推理服务。他的故事展示了开发者如何通过团队合作和持续学习,克服挑战,推动AI在各行业的应用,照亮智能化之路。
102 0
|
3月前
|
人工智能 自然语言处理 API
动手实践:高效构建企业级AI搜索
本文介绍了基于阿里云 Elasticsearch的AI搜索产品能力、业务价值、场景应用,以及搭建演示等。
11268 5
|
3月前
|
机器学习/深度学习 编译器 PyTorch
自研分布式训练框架EPL问题之吸引社区参与共建如何解决
自研分布式训练框架EPL问题之吸引社区参与共建如何解决
|
6月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
|
5月前
|
域名解析 弹性计算 开发者
期待已久,重磅回归,阿里云推出全新《高效构建企业门户网站方案》,你想了解的,这一篇就足够了。
期待已久,重磅回归,《高效构建企业门户网站方案》,你想了解的,这一篇就足够了。
24457 2
|
6月前
|
人工智能 监控 数据处理
【AI大模型应用开发】【LangSmith: 生产级AI应用维护平台】1. 快速上手数据集与测试评估过程
【AI大模型应用开发】【LangSmith: 生产级AI应用维护平台】1. 快速上手数据集与测试评估过程
122 0
|
6月前
|
监控 小程序 开发者
【3月开发者日回顾】“小程序加速审核能力”即将上线!
【3月开发者日回顾】“小程序加速审核能力”即将上线!
52 0