【数据结构与算法篇】 手撕八大排序算法之选择排序

简介: 【数据结构与算法篇】 手撕八大排序算法之选择排序

👻内容专栏: 《数据结构与算法篇》

🐨本文概括:选择排序包括直接选择排序与堆排序,本篇讲述直接选择排序与堆排序的思想及实现、复杂度及稳定性的分析。

🐼本文作者: 花 蝶

🐸发布时间:2023.8.27

一、直接选择排序

基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

若将以上思想拆分成若干步骤,如下:

  • 在元素集合array[i]–array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换
  • 在剩余的array[i]–array[n-2](array[i+1]–array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

动图演示

👇小的优化

🔗:动图中,利用一趟中找出最小的放到序列的起始位置,直到数据排列完,其实,我们不妨想想可以一趟找出最小的数据和待排序中最左边的数据进行交换,找出最大的数据和待排序中最后边的数据进行交换!

首先,确定起始位置和末端位置的下标,我们可以用beginend表示,在beginend区间内,遍历一遍,找出最大元素下标maxii和最小元素下标mini,小的元素换到左边,大的元素换到右边,之后我们需要begin++end--,依次缩小区间,直到走到 begin 大于或等于 end结束

⚠️需要注意一个特殊的情况

观察下图,maxi在最左边的位置,当找到mini(元素0)之后需要换到左边时,将原本maxi的位置(元素9)给换走了,这就导致最大值与end位置的数据交换时,不是maxi为下标的元素了,所以针对begin等于maxi的情况,我们需要在把最大值换到右边之前进行修正一下。

代码实现

void Swap(int* p1, int* p2)
{
  int tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//直接选择排序
void SelectSort(int* a, int n)
{
  int begin = 0, end = n - 1;
  while (begin < end)
  {
    int maxi = begin, mini = begin;
    for (int i = begin; i <= end; i++)
    {
      if (a[i] > a[maxi])
      {
        maxi = i;
      }
      if (a[i] < a[mini])
      {
        mini = i;
      }
    }
    //小的换到左边
    Swap(&a[begin], &a[mini]);
    //如果maxi与begin重叠,需要进行修正
    if (maxi == begin) maxi = mini;
    //大的换到右边
    Swap(&a[end], &a[maxi]);
    begin++;
    end--;
  }
}

直接选择排序特性

  1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
  2. 时间复杂度:O(N2)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

二、堆排序

走到这里,大家需要首先要弄明白什么是堆?

详解具体堆的概念,堆的实现、向上向下调整算法,可以点击这篇文章 【传送门】深入浅出——二叉树

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

基本思想

1.建堆(Heapify): 首先将待排序的数据构建成一个堆。可以通过从最后一个非叶子节点开始,逐步向前调整节点的位置,(这个称为向下调整算法建堆(倒着调整),具体时间复杂度分析可以看上面标题下给出的文章。)使得每个子树都满足堆的性质。这个过程称为“堆化”。

2.排序: 一旦建立了堆,最大(或最小)元素就位于堆的根节点。将根节点与堆的最后一个元素交换位置,然后将堆的大小减一,使得最大元素“沉”到数组末尾。接着重新堆化剩余的堆,使得次大的元素浮到根节点。

3.重复: 重复上述步骤,直到堆的大小减为1,此时整个数组已经有序。

建堆

例如,以下图中为一个完全二叉数,但还不具有堆的性质,这里我们以排升序为例,所以我们需要将它构建为大堆,需要从最后一个非叶子节点开始倒着往下调整(为什么不直接使用向上调整?具体可看上面给出的文章,因为经过对比计算,向上调整的时间复杂度高于向下调整的时间复杂度),也就是最后一个叶子节点的父节点((n - 1 - 1) / 2),根据父节点parent的下标位置,求出左孩子节点child,公式:child = parent * 2 + 1,为什么只求出左孩子节点?我们只需要把左孩子与右孩子进行比较,child + 1就能得到右孩子,右孩子存在的情况下,且右孩子大于左孩子,那么就child++,将左孩子节点更新为右孩子节点。然后再去父亲节点进行比较,如果孩子节点大于父亲节点,那么就与父亲交换。需要注意的是,交换之后,一定需要往下继续调整,继续迭代走,即:parent = child ; child = parent * 2 + 1;

排序

建出大堆之后,数组中的首尾数据进行交换,最小的数据(堆顶)放到了最后的位置,除去最后一个数据,对堆进行向下调整,再把堆顶(此时是次小的数据),与倒数第二个位置的数据交换……以此类推,整个调整完后,数组中的数据依次排列就是一个升序序列。

代码实现

void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    //假设左孩子小于父亲
    //如果右孩子还小于左孩子,则child ++
    if (child + 1 < n && a[child + 1] > a[child]) child++;
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
//堆排序 时间复杂度为:O(N*logN)
void HeapSort(int* a, int n)
{
  //建大堆(升序)
  //O(N)
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  //堆顶元素和最后一个交换
  //再向下调整
  //O(N*logN)
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    end--;
  }
}

堆排序特性

  • 时间复杂度: 堆排序的平均时间复杂度为 O(N*log N),其中 N 是待排序数组的长度。构建堆的时间复杂度为O(N),从堆顶调整堆的操作需要O(log n)的时间,而总共需要执行交换操作 n 次,即 O(N + N*logN)O(N*log N)
  • 空间复杂度: 堆排序的空间复杂度为 O(1),即排序过程中只需要很少的额外空间来存储临时变量.
  • 稳定性: 堆排序是不稳定的排序算法,即在排序过程中,相等元素的相对顺序可能会发生改变。这是因为堆排序涉及到元素交换的操作,可能会导致相同值的元素交换位置。

更多数据结构与算法系列文章👉😉==> 【传送门】

目录
相关文章
|
23天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
34 1
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
81 4
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
92 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
24天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
97 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
23天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
50 0
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
42 0