大数据Flink安装部署(2)

简介: 大数据Flink安装部署(2)

4 Flink On Yarn模式

4.1 原理

4.1.1 为什么使用Flink On Yarn?

在实际开发中,使用Flink时,更多的使用方式是Flink On Yarn模式,原因如下:

-1.Yarn的资源可以按需使用,提高集群的资源利用率

-2.Yarn的任务有优先级,根据优先级运行作业

-3.基于Yarn调度系统,能够自动化地处理各个角色的 Failover(容错)

○ JobManager 进程和 TaskManager 进程都由 Yarn NodeManager 监控

○ 如果 JobManager 进程异常退出,则 Yarn ResourceManager 会重新调度 JobManager

到其他机器

○ 如果 TaskManager 进程异常退出,JobManager 会收到消息并重新向 Yarn

ResourceManager 申请资源,重新启动 TaskManager

4.1.2 Flink如何和Yarn进行交互?

79683560e5ba45c49d9f2897eae330e4.png

1e866d1d382f4088bd7986a66a721d06.png

1.Client上传jar包和配置文件到HDFS集群上

2.Client向Yarn ResourceManager提交任务并申请资源

3.ResourceManager分配Container资源并启动ApplicationMaster,然后AppMaster加载Flink的Jar

包和配置构建环境,启动JobManager

JobManager和ApplicationMaster运行在同一个container上。

一旦他们被成功启动,AppMaster就知道JobManager的地址(AM它自己所在的机器)。

它就会为TaskManager生成一个新的Flink配置文件(他们就可以连接到JobManager)。

这个配置文件也被上传到HDFS上。

此外,AppMaster容器也提供了Flink的web服务接口。

YARN所分配的所有端口都是临时端口,这允许用户并行执行多个Flink

4.ApplicationMaster向ResourceManager申请工作资源,NodeManager加载Flink的Jar包和配置构

建环境并启动TaskManager

5.TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务

4.1.3 两种方式

4.1.3.1 Session模式

57468b69922b4d40a284fa72c896d95a.png

18404dee337d4e158900596875724992.png

特点:需要事先申请资源,启动JobManager和TaskManger

优点:不需要每次递交作业申请资源,而是使用已经申请好的资源,从而提高执行效率

缺点:作业执行完成以后,资源不会被释放,因此一直会占用系统资源

应用场景:适合作业递交比较频繁的场景,小作业比较多的场景

4.1.3.2 Per-Job模式

3f8ea79aee384854a4e3888ec78c82a0.png

a710438e8be044f8b8cdef2e11455390.png

特点:每次递交作业都需要申请一次资源

优点:作业运行完成,资源会立刻被释放,不会一直占用系统资源

缺点:每次递交作业都需要申请资源,会影响执行效率,因为申请资源需要消耗时间

应用场景:适合作业比较少的场景、大作业的场景

4.2 操作

1.关闭yarn的内存检查

vim /export/server/hadoop/etc/hadoop/yarn-site.xml

添加:

<!-- 关闭yarn内存检查 -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>

说明:

是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀

掉,默认是true。

在这里面我们需要关闭,因为对于flink使用yarn模式下,很容易内存超标,这个时候yarn会自

动杀掉job

2.同步

scp -r /export/server/hadoop/etc/hadoop/yarn-site.xml
node2:/export/server/hadoop/etc/hadoop/yarn-site.xml
scp -r /export/server/hadoop/etc/hadoop/yarn-site.xml
node3:/export/server/hadoop/etc/hadoop/yarn-site.xml

3.重启yarn

/export/server/hadoop/sbin/stop-yarn.sh
/export/server/hadoop/sbin/start-yarn.sh

4.3 测试

4.3.1 Session模式

yarn-session.sh(开辟资源) + flink run(提交任务)

1.在yarn上启动一个Flink会话,node1上执行以下命令

/export/server/flink/bin/yarn-session.sh -n 2 -tm 800 -s 1 -d

说明:

申请2个CPU、1600M内存

# -n 表示申请2个容器,这里指的就是多少个taskmanager
# -tm 表示每个TaskManager的内存大小
# -s 表示每个TaskManager的slots数量
# -d 表示以后台程序方式运行

注意:

该警告不用管

WARN org.apache.hadoop.hdfs.DFSClient - Caught exception

java.lang.InterruptedException

2.查看UI界面

91ebf2aaaf9a482eb930967d24f99be2.png

3.使用flink run提交任务:

/export/server/flink/bin/flink run /export/server/flink/examples/batch/WordCount.jar

运行完之后可以继续运行其他的小任务

/export/server/flink/bin/flink run /export/server/flink/examples/batch/WordCount.jar

4.通过上方的ApplicationMaster可以进入Flink的管理界面

518b648b0e344e56b839d803aac8ea50.png

5a3201d2f1184a59aa254d06239140f9.png

5.关闭yarn-session:

yarn application -kill application_1599402747874_0001

5f40dc56a5104532afced7fa2c503967.png

rm -rf /tmp/.yarn-properties-root

4.3.2 Per-Job分离模式

1.直接提交job

/export/server/flink/bin/flink run -m yarn-cluster -yjm 1024 -ytm 1024
/export/server/flink/examples/batch/WordCount.jar
# -m jobmanager的地址
# -yjm 1024 指定jobmanager的内存信息
# -ytm 1024 指定taskmanager的内存信息

2.查看UI界面

http://node1:8088/cluster

6758331128ba44e5ac7d0e53312b6f69.png

f20608d085f742cc85b88b03da62996b.png

3.注意:

在之前版本中如果使用的是flink on yarn方式,想切换回standalone模式的话,如果报错需要删

除:【/tmp/.yarn-properties-root】

rm -rf /tmp/.yarn-properties-root

因为默认查找当前yarn集群中已有的yarn-session信息中的jobmanager

4.4 参数总结

[root@node1 bin]# /export/server/flink/bin/flink --help
./flink <ACTION> [OPTIONS] [ARGUMENTS]
The following actions are available:
Action "run" compiles and runs a program.
  Syntax: run [OPTIONS] <jar-file> <arguments>
  "run" action options:
     -c,--class <classname>               Class with the program entry point
                                          ("main()" method). Only needed if the
                                          JAR file does not specify the class in
                                          its manifest.
     -C,--classpath <url>                 Adds a URL to each user code
                                          classloader  on all nodes in the
                                          cluster. The paths must specify a
                                          protocol (e.g. file://) and be
                                          accessible on all nodes (e.g. by means
                                          of a NFS share). You can use this
                                          option multiple times for specifying
                                          more than one URL. The protocol must
                                          be supported by the {@link
                                          java.net.URLClassLoader}.
     -d,--detached                        If present, runs the job in detached
                                          mode
     -n,--allowNonRestoredState           Allow to skip savepoint state that
                                          cannot be restored. You need to allow
                                          this if you removed an operator from
                                          your program that was part of the
                                          program when the savepoint was
                                          triggered.
     -p,--parallelism <parallelism>       The parallelism with which to run the
                                          program. Optional flag to override the
                                          default value specified in the
                                          configuration.
     -py,--python <pythonFile>            Python script with the program entry
                                          point. The dependent resources can be
                                          configured with the `--pyFiles`
                                          option.
     -pyarch,--pyArchives <arg>           Add python archive files for job. The
                                          archive files will be extracted to the
                                          working directory of python UDF
                                          worker. Currently only zip-format is
                                          supported. For each archive file, a
                                          target directory be specified. If the
                                          target directory name is specified,
                                          the archive file will be extracted to
                                          a name can directory with the
                                          specified name. Otherwise, the archive
                                          file will be extracted to a directory
                                          with the same name of the archive
                                          file. The files uploaded via this
                                          option are accessible via relative
                                          path. '#' could be used as the
                                          separator of the archive file path and
                                          the target directory name. Comma (',')
                                          could be used as the separator to
                                          specify multiple archive files. This
                                          option can be used to upload the
                                          virtual environment, the data files
                                          used in Python UDF (e.g.: --pyArchives
                                          file:///tmp/py37.zip,file:///tmp/data.
                                          zip#data --pyExecutable
                                          py37.zip/py37/bin/python). The data
                                          files could be accessed in Python UDF,
                                          e.g.: f = open('data/data.txt', 'r').
     -pyexec,--pyExecutable <arg>         Specify the path of the python
                                          interpreter used to execute the python
                                          UDF worker (e.g.: --pyExecutable
                                          /usr/local/bin/python3). The python
                                          UDF worker depends on Python 3.5+,
                                          Apache Beam (version == 2.23.0), Pip
                                          (version >= 7.1.0) and SetupTools
                                          (version >= 37.0.0). Please ensure
                                          that the specified environment meets
                                          the above requirements.
     -pyfs,--pyFiles <pythonFiles>        Attach custom python files for job.
                                          These files will be added to the
                                          PYTHONPATH of both the local client
                                          and the remote python UDF worker. The
                                          standard python resource file suffixes
                                          such as .py/.egg/.zip or directory are
                                          all supported. Comma (',') could be
                                          used as the separator to specify
                                          multiple files (e.g.: --pyFiles
                                          file:///tmp/myresource.zip,hdfs:///$na
                                          menode_address/myresource2.zip).
     -pym,--pyModule <pythonModule>       Python module with the program entry
                                          point. This option must be used in
                                          conjunction with `--pyFiles`.
     -pyreq,--pyRequirements <arg>        Specify a requirements.txt file which
                                          defines the third-party dependencies.
                                          These dependencies will be installed
                                          and added to the PYTHONPATH of the
                                          python UDF worker. A directory which
                                          contains the installation packages of
                                          these dependencies could be specified
                                          optionally. Use '#' as the separator
                                          if the optional parameter exists
                                          (e.g.: --pyRequirements
                                          file:///tmp/requirements.txt#file:///t
                                          mp/cached_dir).
     -s,--fromSavepoint <savepointPath>   Path to a savepoint to restore the job
                                          from (for example
                                          hdfs:///flink/savepoint-1537).
     -sae,--shutdownOnAttachedExit        If the job is submitted in attached
                                          mode, perform a best-effort cluster
                                          shutdown when the CLI is terminated
                                          abruptly, e.g., in response to a user
                                          interrupt, such as typing Ctrl + C.
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
  Options for yarn-cluster mode:
     -d,--detached                        If present, runs the job in detached
                                          mode
     -m,--jobmanager <arg>                Set to yarn-cluster to use YARN
                                          execution mode.
     -yat,--yarnapplicationType <arg>     Set a custom application type for the
                                          application on YARN
     -yD <property=value>                 use value for given property
     -yd,--yarndetached                   If present, runs the job in detached
                                          mode (deprecated; use non-YARN
                                          specific option instead)
     -yh,--yarnhelp                       Help for the Yarn session CLI.
     -yid,--yarnapplicationId <arg>       Attach to running YARN session
     -yj,--yarnjar <arg>                  Path to Flink jar file
     -yjm,--yarnjobManagerMemory <arg>    Memory for JobManager Container with
                                          optional unit (default: MB)
     -ynl,--yarnnodeLabel <arg>           Specify YARN node label for the YARN
                                          application
     -ynm,--yarnname <arg>                Set a custom name for the application
                                          on YARN
     -yq,--yarnquery                      Display available YARN resources
                                          (memory, cores)
     -yqu,--yarnqueue <arg>               Specify YARN queue.
     -ys,--yarnslots <arg>                Number of slots per TaskManager
     -yt,--yarnship <arg>                 Ship files in the specified directory
                                          (t for transfer)
     -ytm,--yarntaskManagerMemory <arg>   Memory per TaskManager Container with
                                          optional unit (default: MB)
     -yz,--yarnzookeeperNamespace <arg>   Namespace to create the Zookeeper
                                          sub-paths for high availability mode
     -z,--zookeeperNamespace <arg>        Namespace to create the Zookeeper
                                          sub-paths for high availability mode
  Options for default mode:
     -D <property=value>             Allows specifying multiple generic
                                     configuration options. The available
                                     options can be found at
                                     https://ci.apache.org/projects/flink/flink-
                                     docs-stable/ops/config.html
     -m,--jobmanager <arg>           Address of the JobManager to which to
                                     connect. Use this flag to connect to a
                                     different JobManager than the one specified
                                     in the configuration. Attention: This
                                     option is respected only if the
                                     high-availability configuration is NONE.
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths
                                     for high availability mode
Action "run-application" runs an application in Application Mode.
  Syntax: run-application [OPTIONS] <jar-file> <arguments>
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
Action "info" shows the optimized execution plan of the program (JSON).
  Syntax: info [OPTIONS] <jar-file> <arguments>
  "info" action options:
     -c,--class <classname>           Class with the program entry point
                                      ("main()" method). Only needed if the JAR
                                      file does not specify the class in its
                                      manifest.
     -p,--parallelism <parallelism>   The parallelism with which to run the
                                      program. Optional flag to override the
                                      default value specified in the
                                      configuration.
Action "list" lists running and scheduled programs.
  Syntax: list [OPTIONS]
  "list" action options:
     -a,--all         Show all programs and their JobIDs
     -r,--running     Show only running programs and their JobIDs
     -s,--scheduled   Show only scheduled programs and their JobIDs
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
  Options for yarn-cluster mode:
     -m,--jobmanager <arg>            Set to yarn-cluster to use YARN execution
                                      mode.
     -yid,--yarnapplicationId <arg>   Attach to running YARN session
     -z,--zookeeperNamespace <arg>    Namespace to create the Zookeeper
                                      sub-paths for high availability mode
  Options for default mode:
     -D <property=value>             Allows specifying multiple generic
                                     configuration options. The available
                                     options can be found at
                                     https://ci.apache.org/projects/flink/flink-
                                     docs-stable/ops/config.html
     -m,--jobmanager <arg>           Address of the JobManager to which to
                                     connect. Use this flag to connect to a
                                     different JobManager than the one specified
                                     in the configuration. Attention: This
                                     option is respected only if the
                                     high-availability configuration is NONE.
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths
                                     for high availability mode
Action "stop" stops a running program with a savepoint (streaming jobs only).
  Syntax: stop [OPTIONS] <Job ID>
  "stop" action options:
     -d,--drain                           Send MAX_WATERMARK before taking the
                                          savepoint and stopping the pipelne.
     -p,--savepointPath <savepointPath>   Path to the savepoint (for example
                                          hdfs:///flink/savepoint-1537). If no
                                          directory is specified, the configured
                                          default will be used
                                          ("state.savepoints.dir").
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
  Options for yarn-cluster mode:
     -m,--jobmanager <arg>            Set to yarn-cluster to use YARN execution
                                      mode.
     -yid,--yarnapplicationId <arg>   Attach to running YARN session
     -z,--zookeeperNamespace <arg>    Namespace to create the Zookeeper
                                      sub-paths for high availability mode
  Options for default mode:
     -D <property=value>             Allows specifying multiple generic
                                     configuration options. The available
                                     options can be found at
                                     https://ci.apache.org/projects/flink/flink-
                                     docs-stable/ops/config.html
     -m,--jobmanager <arg>           Address of the JobManager to which to
                                     connect. Use this flag to connect to a
                                     different JobManager than the one specified
                                     in the configuration. Attention: This
                                     option is respected only if the
                                     high-availability configuration is NONE.
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths
                                     for high availability mode
Action "cancel" cancels a running program.
  Syntax: cancel [OPTIONS] <Job ID>
  "cancel" action options:
     -s,--withSavepoint <targetDirectory>   **DEPRECATION WARNING**: Cancelling
                                            a job with savepoint is deprecated.
                                            Use "stop" instead.
                                            Trigger savepoint and cancel job.
                                            The target directory is optional. If
                                            no directory is specified, the
                                            configured default directory
                                            (state.savepoints.dir) is used.
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
  Options for yarn-cluster mode:
     -m,--jobmanager <arg>            Set to yarn-cluster to use YARN execution
                                      mode.
     -yid,--yarnapplicationId <arg>   Attach to running YARN session
     -z,--zookeeperNamespace <arg>    Namespace to create the Zookeeper
                                      sub-paths for high availability mode
  Options for default mode:
     -D <property=value>             Allows specifying multiple generic
                                     configuration options. The available
                                     options can be found at
                                     https://ci.apache.org/projects/flink/flink-
                                     docs-stable/ops/config.html
     -m,--jobmanager <arg>           Address of the JobManager to which to
                                     connect. Use this flag to connect to a
                                     different JobManager than the one specified
                                     in the configuration. Attention: This
                                     option is respected only if the
                                     high-availability configuration is NONE.
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths
                                     for high availability mode
Action "savepoint" triggers savepoints for a running job or disposes existing ones.
  Syntax: savepoint [OPTIONS] <Job ID> [<target directory>]
  "savepoint" action options:
     -d,--dispose <arg>       Path of savepoint to dispose.
     -j,--jarfile <jarfile>   Flink program JAR file.
  Options for Generic CLI mode:
     -D <property=value>   Allows specifying multiple generic configuration
                           options. The available options can be found at
                           https://ci.apache.org/projects/flink/flink-docs-stabl
                           e/ops/config.html
     -e,--executor <arg>   DEPRECATED: Please use the -t option instead which is
                           also available with the "Application Mode".
                           The name of the executor to be used for executing the
                           given job, which is equivalent to the
                           "execution.target" config option. The currently
                           available executors are: "remote", "local",
                           "kubernetes-session", "yarn-per-job", "yarn-session".
     -t,--target <arg>     The deployment target for the given application,
                           which is equivalent to the "execution.target" config
                           option. For the "run" action the currently available
                           targets are: "remote", "local", "kubernetes-session",
                           "yarn-per-job", "yarn-session". For the
                           "run-application" action the currently available
                           targets are: "kubernetes-application",
                           "yarn-application".
  Options for yarn-cluster mode:
     -m,--jobmanager <arg>            Set to yarn-cluster to use YARN execution
                                      mode.
     -yid,--yarnapplicationId <arg>   Attach to running YARN session
     -z,--zookeeperNamespace <arg>    Namespace to create the Zookeeper
                                      sub-paths for high availability mode
  Options for default mode:
     -D <property=value>             Allows specifying multiple generic
                                     configuration options. The available
                                     options can be found at
                                     https://ci.apache.org/projects/flink/flink-
                                     docs-stable/ops/config.html
     -m,--jobmanager <arg>           Address of the JobManager to which to
                                     connect. Use this flag to connect to a
                                     different JobManager than the one specified
                                     in the configuration. Attention: This
                                     option is respected only if the
                                     high-availability configuration is NONE.
     -z,--zookeeperNamespace <arg>   Namespace to create the Zookeeper sub-paths
                                     for high availability mode


相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
976 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
SQL 存储 大数据
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
8240 32
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
572 56
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
370 1
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
312 0
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
357 0
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
540 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3824 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

热门文章

最新文章