Flink CDC产品常见问题之没有报错但是一直监听不到数据如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

问题一:flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?


flink cdc 每秒同步记录数 这个官方有相关压测 的文档吗?


参考回答:

参考本图,不完全是压测的场景,还要考虑下游数据写入能力,增量数据只有1个并行度等情况。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592237


问题二:Flink CDC里为什么使用yarn-session模式这样启用不了checkpoint吗?


Flink CDC里flink run -d -D yarn.application.id=application_xxxx -D execution.checkpointing.interval=60000,flink1.16版本为什么使用yarn-session模式这样启用不了checkpoint吗?


参考回答:

在 Apache Flink 1.16 版本中,在 YARN session 模式下运行 Flink 应用程序,并尝试通过 -D 参数设置 checkpoint 间隔,需要注意以下几点:

  1. YARN Session 和 Checkpoint 配置
    在启动 yarn-session 模式时,你应该先创建一个持久化的 Flink YARN session,然后在提交作业时通过作业的 conf/flink-conf.yaml 或者直接在代码中指定 checkpoint 相关配置。不过,有时候也可以通过 Java API 或命令行参数临时覆盖部分配置项。
    -D execution.checkpointing.interval=60000 这种方式是在命令行上为作业指定自定义配置,但它是否能生效取决于 Flink 是否允许在运行时动态覆盖全局或作业级别的 checkpoint interval 设置。
  2. 正确设置 Checkpoint 间隔
    如果要在命令行提交作业时设置 checkpoint 间隔,确保使用正确的配置键名,对于 checkpoint 间隔应该是:
-D jobmanager.checkpoints.interval=60000

    而不是 execution.checkpointing.interval,虽然在某些版本中两者可能可以互换,但在不同版本间配置键名可能会有所差异。

3.配置生效范围

当你在 Flink 1.16 中通过 -D 参数设置 checkpoint 间隔时,确保这些参数是在提交作业到已经启动的 YARN session 时传递的,而不是在启动 yarn-session 本身时。这是因为启动 session 时不一定会处理作业级别的具体配置。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592243


问题三:Flink CDC里目前社区版本cdc支持整库同步了么?


Flink CDC里目前社区版本cdc支持整库同步了么?source是PG,sink是hudi。 后面有计划支持么?


参考回答:

目前支持mysql整库同步到starrocks/doris。参考这个:

https://github.com/ververica/flink-cdc-connectors/issues/2861


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592246


问题四:Flink CDC里这个是怎么回事?


Flink CDC里这个是怎么回事? 什么原因导致起不来的呢?


参考回答:

看着就是没执行或者执行完成退出了。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592249


问题五:Flink CDC里没有报错,但是一直监听不到数据,是需要什么参数配置吗 ?


Flink CDC里使用flinksql oracle cdc 代码正常起来,没有报错,但是一直监听不到数据,是需要什么参数配置吗 ?一直捕获不到数据,打印到控制台也没有什么输出,建表语句是这个CREATE TABLE source_order (

ID INT,

PRICE DOUBLE,

DESC STRING,

CREATE_TIME TIMESTAMP,

UPDATE_TIME TIMESTAMP

)WITH (

'connector' ='oracle-cdc',

'hostname' = '10.190.228.33',

'port' = '1521',

'username' = 'xxx',

'password' = 'xxx',

'database-name' = 'xxx',

'schema-name' = 'xxx',

'table-name' ='T_ORDER',

'debezium.log.database.tablename.case.insensitive'='false',

'debezium.log.mining.strategy' = 'online_catalog',

'debezium.log.mining.continuous.mine' = 'true'

)


参考回答:

试一下这个'debezium.database.tablename.case.insensitive'='false',

'debezium.database.serverTimezone'='Asia/Shanghai',

'debezium.log.mining.strategy'='online_catalog'或者自己在工具中debug一下cdc源码,看看是哪儿没获取到日志。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/592255

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
打赏
0
1
1
0
106
分享
相关文章
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
247 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
174 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
274 1
Flink CDC + Hologres高性能数据同步优化实践
Flink 如何分流数据
Flink 如何分流数据,3种分流方式
4173 0
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2217 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
280 0
Flink CDC 在阿里云实时计算Flink版的云上实践

相关产品

  • 实时计算 Flink版