大数据处理架构Hadoop

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【4月更文挑战第10天】Hadoop是开源的分布式计算框架,核心包括MapReduce和HDFS,用于海量数据的存储和计算。具备高可靠性、高扩展性、高效率和低成本优势,但存在低延迟访问、小文件存储和多用户写入等问题。运行模式有单机、伪分布式和分布式。NameNode管理文件系统,DataNode存储数据并处理请求。Hadoop为大数据处理提供高效可靠的解决方案。

Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,它的核心设计包括MapReduce和HDFS。Hadoop通过MapReduce计算模型为海量的数据提供了计算,而HDFS为海量的数据提供了存储。基于Hadoop,用户可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个节点组成的大规模计算机集群上。
image.png

Hadoop的优点主要有:

  1. 高可靠性:Hadoop具有按位存储和处理数据的能力,能够自动保存数据的多个副本,并且在任务失败后能自动地重新部署计算任务。
  2. 高扩展性:Hadoop是在可用的计算机集群间分配数据并完成计算任务,这些集群可以方便地扩展到数以千计的节点。
  3. 高效率:Hadoop通过并发数据,可以在节点之间动态并行处理数据,使得处理速度非常快。
  4. 成本低:Hadoop通过普通廉价的计算机组成服务器集群来分发以及处理数据,相比使用大型机乃至超级计算机成本低很多。

然而,Hadoop也存在一些缺点,例如不适用于低延迟数据访问,不能高效存储大量小文件,以及不支持多用户写入并任意修改文件等。

Hadoop的运行模式主要有三种:

  1. 单机模式:即单Java进程,方便进行调试。
  2. 伪分布式模式:Hadoop可以在单节点上以伪分布式的方式运行,Hadoop进程以分离的Java进程来运行,节点既作为NameNode也作为DataNode,同时读取的是HDFS中的文件。
  3. 分布式模式:使用多个节点构成集群环境来运行Hadoop。

在Hadoop的架构中,NameNode负责管理文件系统命名空间,例如打开文件系统、关闭文件系统、重命名文件或者目录等,它负责确定指定的文件块到具体的DataNode结点的映射关系,以及在DataNode结点之间迁移数据块,以保证数据块映射的正确性,同时会负责处理客户端读写请求。而DataNode负责存储数据,处理客户端的读写请求,执行数据块的读和写,并定期向NameNode汇报数据块信息。

总的来说,Hadoop为大数据处理提供了强大的框架和工具,使得大规模的数据处理和分析变得更为高效和可靠。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
302 70
|
3月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
213 79
|
2月前
|
SQL 分布式数据库 Apache
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
网易游戏 x Apache Doris:湖仓一体架构演进之路
|
2月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
2月前
|
存储 数据采集 分布式计算
别光堆数据,架构才是大数据的灵魂!
别光堆数据,架构才是大数据的灵魂!
89 13
|
5月前
|
存储 分布式计算 Hadoop
MPP 架构与 Hadoop 架构技术选型指南
MPP架构与Hadoop架构是处理海量数据的两大选择。MPP通过大规模并行处理实现快速查询响应,适用于企业级数据仓库和OLAP应用;Hadoop则以分布式存储和计算为核心,擅长处理非结构化数据和大数据分析。两者各有优劣,MPP适合结构化数据和高性能需求场景,而Hadoop在扩展性和容错性上表现更佳。选择时需综合考虑业务需求、预算和技术能力。
464 14
|
4月前
|
存储 SQL 分布式计算
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
|
6月前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
2616 8
|
8月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
370 6

热门文章

最新文章