第10章 经典智能算法——10.1 粒子群算法的MATLAB实现(1)

简介: 第10章 经典智能算法——10.1 粒子群算法的MATLAB实现(1)

第10章  经典智能算法


知识要点


人工智能学科诞生于20世纪50年代中期,当时由于计算机的产生与发展,人们开始了真正意义上的人工智能的研究,其在自动推理、认知建模、机器学习、神经元网络、自然语言处理、专家系统、智能机器人等方面的理论和应用上都取得了成果。

本章主要介绍粒子群算法、遗传算法、蚁群算法3种经典智能算法及其MATLAB实现方法。


学习要求


280c3f7f195a0c6e8c99d57ec86d6ddd_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg


10.1  粒子群算法的MATLAB实现(1)


粒子群算法(Particle Swarm OptimizationPSO)属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解。它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,没有遗传算法的交叉Crossover)和变异Mutation)操作,它通过追随当前搜索到的最优值来寻找全局最优。


10.1.1  基本原理


PSO可以用于解决优化问题。在PSO中,每个优化问题的潜在解都是搜索空间中的一只鸟,称为粒子。所有的粒子都有一个由被优化的函数决定的适值(Fitness Value),每个粒子还有一个速度决定它们飞行的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

粒子位置的更新方式如图10-1所示。

61951b2c9c44234bacaad1407cc463cf_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

10-1  粒子位置的更新方式


其中,x表示粒子起始位置,v表示粒子飞行的速度,p表示搜索到的粒子的最优位置。

PSO初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己:一个是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。

另外,也可以不用整个种群而只用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

假设在一个D维的目标搜索空间中,有N个粒子组成一个群落,其中第i个粒子表示为一个D维的向量

bed780fd46d3eb6e037b4877d461db97_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

i个粒子的飞行速度也是一个D维的向量,记为

20edf03130c1bcddab0ce6e4d644cb6f_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

i个粒子迄今为止搜索到的最优位置称为个体极值,记为

bcadecceefc1f608add7ce29685d73fb_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

整个粒子群迄今为止搜索到的最优位置为全局极值,记为

483fb556c3ecdbb871e3ffd8cc9577fa_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

在找到这两个最优值时,粒子根据如下公式来更新自己的速度和位置:

88bf78590ba79cdf6843d879f301571d_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

其中,c1c2为学习因子,也称加速常数(Acceleration Constant);r1r2[0,1]范围内的均匀随机数。


8cc35171309b88504ef413fee07cb4c1_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg右边由三部分组成:

第一部分为惯性Inertia)或动量Momentum)部分,反映了粒子的运动习惯(Habit,代表粒子有维持自己先前速度的趋势。

第二部分为认知Cognition)部分,反映了粒子对自身历史经验的记忆或回忆,代表粒子有向自身历史最佳位置逼近的趋势。

第三部分为社会Social)部分,反映了粒子间协同合作与知识共享的群体历史经验,代表粒子有向群体或邻域历史最佳位置逼近的趋势。


由于粒子群算法具有高效的搜索能力,因此有利于得到多目标意义下的最优解;通过代表整个解集种群,按并行方式同时搜索多个非劣解,即搜索到多个Pareto最优解。

同时,粒子群算法的通用性比较好,适合处理多种类型的目标函数和约束,并且容易与传统的优化方法结合,从而改进自身的局限性,更高效地解决问题。因此,将粒子群算法应用于解决多目标优化问题上具有很大的优势。



10.1.2  程序设计


基本粒子群算法的流程图如图10-2所示。其具体过程如下:


9da2aa0351580ab063057c2a53c4d5c3_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

10-2  基本粒子群算法流程图

初始化粒子群,包括群体规模N、每个粒子的位置xi和速度vi

计算每个粒子的适应度值Fit[i]

对每个粒子,用它的适应度值Fit[i]和个体极值pbest(i)比较,如果Fit[i] > pbest(i),则用Fit[i]替换pbest(i)

对每个粒子,用它的适应度值Fit[i]和个体极值gbest(i)比较,如果Fit[i] > pbest(i),则用Fit[i]替换gbest(i)

更新粒子的速度vi和位置xi

如果满足结束条件(误差足够好或达到最大循环次数)则退出,否则返回


MATLAB中编程实现的基本粒子群算法基本函数为PSO,其调用格式如下:

[xm, fv] = PSO(fitness, N, c1, c2, w, M, D)

其中,fitness为待优化的目标函数,也称适应度函数。N是粒子数目,c1是学习因子1c2是学习因子2w是惯性权重,M是最大迭代次数,D是自变量的个数,xm是目标函数取最小值时的自变量,fv是目标函数的最小值。

使用MATLAB实现基本粒子群算法代码如下:

function [xm, fv] = PSO(fitness, N, c1, c2, w, M, D)
%%%%% 给定初始化条件 %%%%%%
% c1学习因子1
% c2学习因子2
% w惯性权重
% M最大迭代次数
% D搜索空间维数
% N初始化群体个数数目
%%%%%% 初始化种群的个体(可以在这里限定位置和速度的范围) %%%%%%
format long;
for i = 1 : N
    for j = 1 : D
        x(i, j) = randn;        % 随机初始化位置
        v(i, j) = randn;        % 随机初始化速度
    end
end
%%%%%% 先计算各个粒子的适应度,并初始化Pi和Pg %%%%%%
for i = 1 : N
    p(i) = fitness(x(i, :));
    y(i, :) = x(i, :);
end
pg = x(N, :);       %Pg为全局最优
for i = 1 : (N - 1)
    if fitness(x(i, :)) < fitness(pg)
        pg = x(i, :);
    end
end
%%%%%% 进入主要循环,按照公式依次迭代,直到满足精度要求 %%%%%%
for t = 1 : M
    for i = 1 : N       % 更新速度、位移
        v(i, :) = w * v(i, :) + c1 * rand * (y(i, :) - x(i, :)) + c2 * rand * (pg - x(i, :));
        x(i, :) = x(i, :) + v(i, :);
        if fitness(x(i, :)) < p(i)
            p(i) = fitness(x(i, :));
            y(i, :) = x(i, :);
        end
        if p(i) < fitness(pg)
            pg = y(i, :);
        end
    end
    Pbest(t) = fitness(pg);
end
%%%%%% 最终给出计算结果 %%%%%%
disp('*************************************************')
disp('目标函数取最小值时的自变量:')
xm = pg'
disp('目标函数的最小值为:')
fv = fitness(pg)
disp('*************************************************')


将上面的函数保存到MATLAB可搜索路径中,即可调用该函数。再定义不同的目标函数fitness和其他输入量,就可以用粒子群算法求解不同问题。

粒子群算法使用的函数有很多个,下面介绍两个常用的适应度函数。


1Griewank函数


Griewank函数的MATLAB代码如下:

function y = Griewank(x)        % Griewank函数
% 输入x,给定相应的y值,在x = (0, 0, ……, 0)处有全局极小点0
[row, col] = size(x);
if row > 1
    error('输入的参数错误');
end
y1 = 1 / 4000 * sum(x .^ 2);
y2 = 1;
for h = 1 : col
    y2 = y2 * cos(x(h) / sqrt(h));
end
y = y1 - y2 + 1;
y = - y;

绘制以上函数图像的MATLAB代码如下:

function DrawGriewank()     % 绘制Griewank函数图像
x = [-8 : 0.1 : 8];
y = x;
[X, Y] = meshgrid(x, y);
[row, col] = size(X);
for l = 1 : col
    for h = l : row
        z(h, l) = Griewank([X(h, l), Y(h, l)]);
    end
end
surf(X, Y, z);
shading interp

将以上代码保存为DrawGriewank.m文件,并运行上述代码,得到Griewank函数图像,如图10-3所示。

84516ffd73afc8fc1a277ed3867e9607_640_wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1.png

10-3  Griewank函数图像


2Rastrigin函数


Rastrigin函数的MATLAB代码如下:

function y = Rastrigin(x)       % Rastrigin函数
% 输入x,给定相应的y值,在x = (0, 0, ……, 0)处有全局极小点0
[row, col] = size(x);
if row > 1
    error('输入的参数错误');
end
y = sum(x .^ 2 - 10 * cos(2 * pi * x) + 10);
y = - y;

绘制以上函数图像的MATLAB代码如下:

function DrawRastrigin()
x = [-4 : 0.05 : 4];
y = x;
[X, Y] = meshgrid(x, y);
[row, col] = size(X);
for l = 1 : col
    for h = 1 : row
        z(h, l) = Rastrigin([X(h, l), Y(h, l)]);
    end
end
surf(X, Y, z);
shading interp

将以上代码保存为DrawRastrigin.m文件,并运行上述代码,得到Rastrigin函数图像,如图10-4所示。

221903f3839eb75be2a24bcd2ad8a6bc_640_wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1.png

10-4  Rastrigin函数图像


10-1:利用上文介绍的基本粒子群算法求解下列函数的最小值。

7e38ba72169328077e45f591d4fd7f9e_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

利用基本粒子群算法求解最小值,首先需要确认不同迭代步数对结果的影响。设定题中函数的最小点均为0,粒子群规模为50,惯性权重为0.5,学习因子c11.5,学习因子c22.5,迭代步数分别取100100010000

MATLAB中建立目标函数代码,并保存为fitness.m文件:

function F = fitness(x)
F = 0;
for i = 1 : 30
    F = F + x(i)^2 + x(i) - 6
end

MATLAB命令行窗口中依次输入:

x = zeros(1, 30);
[xm1, fv1] = PSO(@fitness, 50, 1.5, 2.5, 0.5, 100, 30);
[xm2, fv2] = PSO(@fitness, 50, 1.5, 2.5, 0.5, 1000, 30);
[xm3, fv3] = PSO(@fitness, 50, 1.5, 2.5, 0.5, 10000, 30);

运行以上代码,比较目标函数取最小值时的自变量,如表10-1所示。

10-1  比较不同迭代步数下的目标函数值和最小值

5605ee9dd760ebfb9689fd4fdac40d29_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

从表10-1中可以看出,迭代步数不一定与获得解的精度成正比,即迭代步数越大,获得解的精度不一定越高。这是因为粒子群算法是一种随机算法,同样的参数也会算出不同的结果。

在上述参数的基础上,保持惯性权重为0.5、学习因子c11.5、学习因子c22.5、迭代步数为100不变,粒子群规模分别取10100500,运行以下MATLAB代码:

x = zeros(1, 30);
[xm1, fv1] = PSO(@fitness, 10, 1.5, 2.5, 0.5, 100, 30);
[xm2, fv2] = PSO(@fitness, 100, 1.5, 2.5, 0.5, 100, 30);
[xm3, fv3] = PSO(@fitness, 500, 1.5, 2.5, 0.5, 100, 30);

比较目标函数取最小值时的自变量,如表10-2所示。

10-2  比较不同粒子群规模下的目标函数值和最小值

fdafb1c00d70466a0cee9dd1b73d6b0d_640_wx_fmt=jpeg&wxfrom=5&wx_lazy=1&wx_co=1.jpg

从表10-2中可以看出,粒子群规模越大,获得解的精度不一定越高。

综合以上不同迭代步数和不同粒子群规模运算得到的结果可知,在粒子群算法中,要想获得精度高的解,关键是各个参数之间的匹配。


相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
14天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。