【KELM分类】基于哈里斯算法优化核极限学习机HHO-KELM实现数据分类附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 【KELM分类】基于哈里斯算法优化核极限学习机HHO-KELM实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,数据分类是一个重要的任务。为了提高分类算法的性能,研究人员一直在不断探索新的方法和技术。核极限学习机(KELM)是一种强大的分类算法,它在处理大规模数据集时表现出色。本文将介绍一种基于哈里斯算法优化的核极限学习机,称为HHO-KELM,以实现更准确和高效的数据分类。

首先,让我们简要了解一下核极限学习机(KELM)。KELM是一种基于极限学习机(ELM)的分类算法,它使用核函数来处理非线性分类问题。ELM是一种单层前馈神经网络,它以随机方式初始化输入层到隐藏层的连接权重,并通过最小二乘法来计算输出层到隐藏层的权重。KELM通过引入核函数,可以将ELM扩展到非线性分类问题。

然而,传统的KELM算法在处理大规模数据集时存在一些问题。由于KELM需要计算输入数据与隐藏层神经元之间的权重,当数据集非常庞大时,计算复杂度会显著增加。为了解决这个问题,研究人员提出了一种基于哈里斯算法的优化方法,即HHO-KELM。

哈里斯算法是一种基于自然进化的优化算法,它模拟了自然界中物种的进化过程。在HHO-KELM中,哈里斯算法被用来优化KELM中的权重计算过程。通过引入哈里斯算法,HHO-KELM能够更快地找到最优的权重,并且在处理大规模数据集时具有更好的性能。

HHO-KELM的基本思想是通过迭代地更新权重来最小化预测误差。在每次迭代中,哈里斯算法根据适应度函数对权重进行调整,并根据优化目标来更新权重。通过不断迭代,HHO-KELM能够逐渐优化权重,从而实现更准确和高效的数据分类。

实验结果表明,HHO-KELM在处理大规模数据集时具有显著优势。与传统的KELM算法相比,HHO-KELM能够更快地收敛,并且在准确性上表现更好。这使得HHO-KELM成为处理大规模数据分类问题的有力工具。

总结起来,基于哈里斯算法优化的核极限学习机HHO-KELM是一种强大的数据分类算法。它通过引入哈里斯算法来优化KELM中的权重计算过程,从而实现更准确和高效的数据分类。未来,我们可以进一步研究和改进HHO-KELM算法,以适应更复杂和多样化的数据分类任务。

核心代码

% Developed in MATLAB R2013b% Source codes demo version 1.0% _____________________________________________________% Main paper:% Harris hawks optimization: Algorithm and applications% Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen% Future Generation Computer Systems, % DOI: https://doi.org/10.1016/j.future.2019.02.028% https://www.sciencedirect.com/science/article/pii/S0167739X18313530% _____________________________________________________% You can run the HHO code online at codeocean.com  https://doi.org/10.24433/CO.1455672.v1% You can find the HHO code at https://github.com/aliasghar68/Harris-hawks-optimization-Algorithm-and-applications-.git% _____________________________________________________%  Author, inventor and programmer: Ali Asghar Heidari,%  PhD research intern, Department of Computer Science, School of Computing, National University of Singapore, Singapore%  Exceptionally Talented Ph. DC funded by Iran's National Elites Foundation (INEF), University of Tehran%  03-03-2019%  Researchgate: https://www.researchgate.net/profile/Ali_Asghar_Heidari%  e-Mail: as_heidari@ut.ac.ir, aliasghar68@gmail.com,%  e-Mail (Singapore): aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu% _____________________________________________________%  Co-author and Advisor: Seyedali Mirjalili%%         e-Mail: ali.mirjalili@gmail.com%                 seyedali.mirjalili@griffithuni.edu.au%%       Homepage: http://www.alimirjalili.com% _____________________________________________________%  Co-authors: Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Hui-Ling Chen%       Homepage: http://www.evo-ml.com/2019/03/02/hho/% _____________________________________________________%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Harris's hawk optimizer: In this algorithm, Harris' hawks try to catch the rabbit.% T: maximum iterations, N: populatoin size, CNVG: Convergence curve% To run HHO: [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)function [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)disp('HHO is now tackling your problem')tic% initialize the location and Energy of the rabbitRabbit_Location=zeros(1,dim);Rabbit_Energy=inf;%Initialize the locations of Harris' hawksX=initialization(N,dim,ub,lb);CNVG=zeros(1,T);t=0; % Loop counterwhile t<T    for i=1:size(X,1)        % Check boundries        FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;        % fitness of locations        fitness=fobj(X(i,:));        % Update the location of Rabbit        if fitness<Rabbit_Energy            Rabbit_Energy=fitness;            Rabbit_Location=X(i,:);        end    end        E1=2*(1-(t/T)); % factor to show the decreaing energy of rabbit    % Update the location of Harris' hawks    for i=1:size(X,1)        E0=2*rand()-1; %-1<E0<1        Escaping_Energy=E1*(E0);  % escaping energy of rabbit                if abs(Escaping_Energy)>=1            %% Exploration:            % Harris' hawks perch randomly based on 2 strategy:                        q=rand();            rand_Hawk_index = floor(N*rand()+1);            X_rand = X(rand_Hawk_index, :);            if q<0.5                % perch based on other family members                X(i,:)=X_rand-rand()*abs(X_rand-2*rand()*X(i,:));            elseif q>=0.5                % perch on a random tall tree (random site inside group's home range)                X(i,:)=(Rabbit_Location(1,:)-mean(X))-rand()*((ub-lb)*rand+lb);            end                    elseif abs(Escaping_Energy)<1            %% Exploitation:            % Attacking the rabbit using 4 strategies regarding the behavior of the rabbit                        %% phase 1: surprise pounce (seven kills)            % surprise pounce (seven kills): multiple, short rapid dives by different hawks                        r=rand(); % probablity of each event                        if r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiege                X(i,:)=(Rabbit_Location)-Escaping_Energy*abs(Rabbit_Location-X(i,:));            end                        if r>=0.5 && abs(Escaping_Energy)>=0.5  % Soft besiege                Jump_strength=2*(1-rand()); % random jump strength of the rabbit                X(i,:)=(Rabbit_Location-X(i,:))-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));            end                        %% phase 2: performing team rapid dives (leapfrog movements)            if r<0.5 && abs(Escaping_Energy)>=0.5, % Soft besiege % rabbit try to escape by many zigzag deceptive motions                                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % hawks perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end                        if r<0.5 && abs(Escaping_Energy)<0.5, % Hard besiege % rabbit try to escape by many zigzag deceptive motions                % hawks try to decrease their average location with the rabbit                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % Perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end            %%        end    end    t=t+1;    CNVG(t)=Rabbit_Energy;%    Print the progress every 100 iterations%    if mod(t,100)==0%        display(['At iteration ', num2str(t), ' the best fitness is ', num2str(Rabbit_Energy)]);%    endendtocend% ___________________________________function o=Levy(d)beta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);o=step;end

⛄ 运行结果

⛄ 参考文献

[1] 吴丁杰,温立书.一种基于哈里斯鹰算法优化的核极限学习机[J].信息通信, 2021(034-011).

[2] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.

[3] 李永贞,樊永显,杨辉华.KELMPSP:基于核极限学习机的假尿苷修饰位点识别[J].中国生物化学与分子生物学报, 2018, 34(7):9.DOI:CNKI:SUN:SWHZ.0.2018-07-014.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
16天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
22天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
21天前
|
存储 缓存 算法
优化轮询算法以提高资源分配的效率
【10月更文挑战第13天】通过以上这些优化措施,可以在一定程度上提高轮询算法的资源分配效率,使其更好地适应不同的应用场景和需求。但需要注意的是,优化策略的选择和实施需要根据具体情况进行详细的分析和评估,以确保优化效果的最大化。
|
22天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
22天前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
19 1
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
25天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。