【KELM分类】基于哈里斯算法优化核极限学习机HHO-KELM实现数据分类附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 【KELM分类】基于哈里斯算法优化核极限学习机HHO-KELM实现数据分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在机器学习领域,数据分类是一个重要的任务。为了提高分类算法的性能,研究人员一直在不断探索新的方法和技术。核极限学习机(KELM)是一种强大的分类算法,它在处理大规模数据集时表现出色。本文将介绍一种基于哈里斯算法优化的核极限学习机,称为HHO-KELM,以实现更准确和高效的数据分类。

首先,让我们简要了解一下核极限学习机(KELM)。KELM是一种基于极限学习机(ELM)的分类算法,它使用核函数来处理非线性分类问题。ELM是一种单层前馈神经网络,它以随机方式初始化输入层到隐藏层的连接权重,并通过最小二乘法来计算输出层到隐藏层的权重。KELM通过引入核函数,可以将ELM扩展到非线性分类问题。

然而,传统的KELM算法在处理大规模数据集时存在一些问题。由于KELM需要计算输入数据与隐藏层神经元之间的权重,当数据集非常庞大时,计算复杂度会显著增加。为了解决这个问题,研究人员提出了一种基于哈里斯算法的优化方法,即HHO-KELM。

哈里斯算法是一种基于自然进化的优化算法,它模拟了自然界中物种的进化过程。在HHO-KELM中,哈里斯算法被用来优化KELM中的权重计算过程。通过引入哈里斯算法,HHO-KELM能够更快地找到最优的权重,并且在处理大规模数据集时具有更好的性能。

HHO-KELM的基本思想是通过迭代地更新权重来最小化预测误差。在每次迭代中,哈里斯算法根据适应度函数对权重进行调整,并根据优化目标来更新权重。通过不断迭代,HHO-KELM能够逐渐优化权重,从而实现更准确和高效的数据分类。

实验结果表明,HHO-KELM在处理大规模数据集时具有显著优势。与传统的KELM算法相比,HHO-KELM能够更快地收敛,并且在准确性上表现更好。这使得HHO-KELM成为处理大规模数据分类问题的有力工具。

总结起来,基于哈里斯算法优化的核极限学习机HHO-KELM是一种强大的数据分类算法。它通过引入哈里斯算法来优化KELM中的权重计算过程,从而实现更准确和高效的数据分类。未来,我们可以进一步研究和改进HHO-KELM算法,以适应更复杂和多样化的数据分类任务。

核心代码

% Developed in MATLAB R2013b% Source codes demo version 1.0% _____________________________________________________% Main paper:% Harris hawks optimization: Algorithm and applications% Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen% Future Generation Computer Systems, % DOI: https://doi.org/10.1016/j.future.2019.02.028% https://www.sciencedirect.com/science/article/pii/S0167739X18313530% _____________________________________________________% You can run the HHO code online at codeocean.com  https://doi.org/10.24433/CO.1455672.v1% You can find the HHO code at https://github.com/aliasghar68/Harris-hawks-optimization-Algorithm-and-applications-.git% _____________________________________________________%  Author, inventor and programmer: Ali Asghar Heidari,%  PhD research intern, Department of Computer Science, School of Computing, National University of Singapore, Singapore%  Exceptionally Talented Ph. DC funded by Iran's National Elites Foundation (INEF), University of Tehran%  03-03-2019%  Researchgate: https://www.researchgate.net/profile/Ali_Asghar_Heidari%  e-Mail: as_heidari@ut.ac.ir, aliasghar68@gmail.com,%  e-Mail (Singapore): aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu% _____________________________________________________%  Co-author and Advisor: Seyedali Mirjalili%%         e-Mail: ali.mirjalili@gmail.com%                 seyedali.mirjalili@griffithuni.edu.au%%       Homepage: http://www.alimirjalili.com% _____________________________________________________%  Co-authors: Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Hui-Ling Chen%       Homepage: http://www.evo-ml.com/2019/03/02/hho/% _____________________________________________________%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Harris's hawk optimizer: In this algorithm, Harris' hawks try to catch the rabbit.% T: maximum iterations, N: populatoin size, CNVG: Convergence curve% To run HHO: [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)function [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)disp('HHO is now tackling your problem')tic% initialize the location and Energy of the rabbitRabbit_Location=zeros(1,dim);Rabbit_Energy=inf;%Initialize the locations of Harris' hawksX=initialization(N,dim,ub,lb);CNVG=zeros(1,T);t=0; % Loop counterwhile t<T    for i=1:size(X,1)        % Check boundries        FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;        % fitness of locations        fitness=fobj(X(i,:));        % Update the location of Rabbit        if fitness<Rabbit_Energy            Rabbit_Energy=fitness;            Rabbit_Location=X(i,:);        end    end        E1=2*(1-(t/T)); % factor to show the decreaing energy of rabbit    % Update the location of Harris' hawks    for i=1:size(X,1)        E0=2*rand()-1; %-1<E0<1        Escaping_Energy=E1*(E0);  % escaping energy of rabbit                if abs(Escaping_Energy)>=1            %% Exploration:            % Harris' hawks perch randomly based on 2 strategy:                        q=rand();            rand_Hawk_index = floor(N*rand()+1);            X_rand = X(rand_Hawk_index, :);            if q<0.5                % perch based on other family members                X(i,:)=X_rand-rand()*abs(X_rand-2*rand()*X(i,:));            elseif q>=0.5                % perch on a random tall tree (random site inside group's home range)                X(i,:)=(Rabbit_Location(1,:)-mean(X))-rand()*((ub-lb)*rand+lb);            end                    elseif abs(Escaping_Energy)<1            %% Exploitation:            % Attacking the rabbit using 4 strategies regarding the behavior of the rabbit                        %% phase 1: surprise pounce (seven kills)            % surprise pounce (seven kills): multiple, short rapid dives by different hawks                        r=rand(); % probablity of each event                        if r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiege                X(i,:)=(Rabbit_Location)-Escaping_Energy*abs(Rabbit_Location-X(i,:));            end                        if r>=0.5 && abs(Escaping_Energy)>=0.5  % Soft besiege                Jump_strength=2*(1-rand()); % random jump strength of the rabbit                X(i,:)=(Rabbit_Location-X(i,:))-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));            end                        %% phase 2: performing team rapid dives (leapfrog movements)            if r<0.5 && abs(Escaping_Energy)>=0.5, % Soft besiege % rabbit try to escape by many zigzag deceptive motions                                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % hawks perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end                        if r<0.5 && abs(Escaping_Energy)<0.5, % Hard besiege % rabbit try to escape by many zigzag deceptive motions                % hawks try to decrease their average location with the rabbit                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % Perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end            %%        end    end    t=t+1;    CNVG(t)=Rabbit_Energy;%    Print the progress every 100 iterations%    if mod(t,100)==0%        display(['At iteration ', num2str(t), ' the best fitness is ', num2str(Rabbit_Energy)]);%    endendtocend% ___________________________________function o=Levy(d)beta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);o=step;end

⛄ 运行结果

⛄ 参考文献

[1] 吴丁杰,温立书.一种基于哈里斯鹰算法优化的核极限学习机[J].信息通信, 2021(034-011).

[2] 何敏,刘建伟,胡久松.遗传优化核极限学习机的数据分类算法[J].传感器与微系统, 2017, 36(10):3.DOI:10.13873/J.1000-9787(2017)10-0141-03.

[3] 李永贞,樊永显,杨辉华.KELMPSP:基于核极限学习机的假尿苷修饰位点识别[J].中国生物化学与分子生物学报, 2018, 34(7):9.DOI:CNKI:SUN:SWHZ.0.2018-07-014.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章