多元回归预测 | Matlab麻雀优化算法优化正则化极限学习机(SSA-RELM)回归预测

简介: 多元回归预测 | Matlab麻雀优化算法优化正则化极限学习机(SSA-RELM)回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

【RELM回归预测】基于麻雀算法优化鲁棒极限学习SSA-RELM实现风电回归预测

随着可再生能源的快速发展,风电作为其中的重要组成部分,在能源领域扮演着越来越重要的角色。然而,由于风速的不稳定性和不可预测性,风电发电量的准确预测一直是一个具有挑战性的问题。为了解决这个问题,研究人员提出了各种各样的预测方法,其中基于回归模型的方法在实际应用中得到了广泛的关注。

在这篇博文中,我们将介绍一种基于麻雀算法优化的鲁棒极限学习机(SSA-RELM)方法,用于风电发电量的回归预测。鲁棒极限学习机是一种新兴的机器学习算法,以其快速的训练速度和良好的泛化能力而受到研究人员的青睐。通过将麻雀算法与鲁棒极限学习机相结合,我们可以进一步提高模型的性能和稳定性。

首先,让我们简要介绍一下鲁棒极限学习机(RELM)。RELM是一种基于单层前馈神经网络的回归模型,其主要特点是随机初始化隐藏层的权重和偏置,然后通过线性最小二乘法来计算输出层的权重。RELM的训练速度非常快,因为它不需要进行迭代优化,而且其泛化能力也非常强,可以在处理小样本问题时取得较好的效果。

然而,RELM在面对噪声和异常值时可能会出现较差的表现。为了解决这个问题,我们引入了麻雀算法(SSA)作为优化方法。麻雀算法是一种基于鸟群行为的优化算法,通过模拟麻雀的觅食和迁徙行为来搜索最优解。通过将麻雀算法与RELM相结合,我们可以在训练过程中进一步提高模型的鲁棒性和稳定性。

在实验中,我们使用了来自某个风电场的实际风速数据和相应的发电量数据作为训练集和测试集。我们将风速作为输入变量,发电量作为输出变量,利用SSA-RELM模型进行回归预测。实验结果表明,与传统的RELM方法相比,SSA-RELM在预测精度和稳定性上都有较大的提升。这表明麻雀算法的引入可以有效地优化鲁棒极限学习机,提高其在风电回归预测中的性能。

总之,本文介绍了一种基于麻雀算法优化的鲁棒极限学习机(SSA-RELM)方法,用于风电回归预测。通过将麻雀算法与鲁棒极限学习机相结合,我们可以进一步提高模型的性能和稳定性。未来的研究可以进一步探索其他优化算法与鲁棒极限学习机的结合,以应对更复杂的预测问题,推动风电发电量预测技术的发展。

核心代码

function [output] = my_map(type, raw_data, raw_data_max, raw_data_min, max, min)if type ~= 0    output = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min);endif type ~= 1     output = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min);endendfunction [out] = my_pos_map(raw_data, raw_data_max, raw_data_min, max, min)    for i = 1:length(raw_data')        out(i) = (max - min) * (raw_data(i) - raw_data_min) / (raw_data_max - raw_data_min) + min;    endendfunction [out] = my_rev_map(raw_data, raw_data_max, raw_data_min, max, min)    for i = 1:length(raw_data')        out(i) = (raw_data(i) - min) * (raw_data_max - raw_data_min) / (max - min) + raw_data_min;    endend

⛄ 运行结果

⛄ 参考文献

[1] 崔兴华,靳晟,姚芷馨,等.基于麻雀搜索算法和广义回归神经网络的玉米产量预测[J].数学的实践与认识, 2022, 52(7):9.

[2] 邵珠林,曹萃文.基于SSA-RELM的S Zorb装置在线产品预测及多目标操作优化分析[J].石油学报(石油加工), 2022, 38(6):12.

[3] 周宇健.基于智能优化算法的风电功率预测及并网稳定性研究[J].[2023-08-28].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计


相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
1月前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

热门文章

最新文章