时序预测 | MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价)
@TOC
预测结果
基本介绍
1.Matlab实现GRU门控循环单元时间序列预测未来;
2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标。
运行环境Matlab2020及以上。
程序设计
- 完整程序和数据获取方式1:私信博主回复MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价),同等价值程序兑换;
- 完整程序和数据下载方式2(资源处直接下载):MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价);
- 完整程序和数据下载方式3(订阅《GRU门控循环单元》专栏,同时可阅读《GRU门控循环单元》专栏内容,数据订阅后私信我获取):MATLAB实现基于GRU门控循环单元的时间序列预测-递归预测未来(多指标评价),专栏外只能获取该程序。
%% 创建混合网络架构 % 输入特征维度 numFeatures = f_; % 输出特征维度 numResponses = 1; FiltZise = 10; % 创建"LSTM"模型 layers = [... % 输入特征 sequenceInputLayer([numFeatures 1 1],'Name','input') sequenceFoldingLayer('Name','fold') % 特征学习 dropoutLayer(0.25,'Name','drop3') % 全连接层 fullyConnectedLayer(numResponses,'Name','fc') regressionLayer('Name','output') ]; layers = layerGraph(layers); layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize'); %% 训练选项 % 批处理样本 MiniBatchSize =128; % 最大迭代次数 MaxEpochs = 500; options = trainingOptions( 'adam', ... 'MaxEpochs',500, ... 'GradientThreshold',1, ... 'InitialLearnRate',optVars.InitialLearnRate, ... 'LearnRateSchedule','piecewise', ... 'LearnRateDropPeriod',400, ... 'LearnRateDropFactor',0.2, ... 'L2Regularization',optVars.L2Regularization,... 'Verbose',false, ... 'Plots','none'); %% 训练混合网络 net = trainNetwork(XrTrain,YrTrain,layers,options);
AI 代码解读
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229