基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络

简介: 该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
时间序列预测是数据分析中的一个重要分支,它涉及到对未来事件的预测,基于历史数据中的模式和趋势。在深度学习领域,卷积神经网络(CNN)和循环神经网络(RNN)的组合,特别是结合长短时记忆单元(LSTM)或门控循环单元(GRU),已成为处理时间序列数据的强大工具。

3.1 CNN基础
卷积神经网络(CNN)最初设计用于图像识别,但其强大的特征提取能力同样适用于时间序列数据。CNN通过卷积层捕获局部特征,池化层降低数据维度,从而提取时间序列中的模式。对于一维时间序列数据,卷积操作定义为:

image.png

3.2 LSTM原理
长短时记忆网络(LSTM)是RNN的一种特殊类型,特别擅长处理长序列数据,通过其独特的门机制(输入门、遗忘门、输出门和细胞状态)来控制信息的流动,从而解决了传统RNN中长期依赖问题。LSTM单元的更新可以表示为:

image.png

3.3 GRU原理
门控循环单元(GRU)是LSTM的一个简化版本,它合并了输入门和遗忘门为单一的更新门,同时合并了细胞状态和隐藏状态,减少了模型的复杂性,但仍然能够有效处理长序列数据。GRU的更新公式为:

image.png

3.4 CNN+LSTM与CNN+GRU对比
共同点:

两者的结合都是先通过CNN提取时间序列的局部特征,然后利用RNN(LSTM或GRU)处理序列特征,捕捉长时依赖。
在时间序列预测中,CNN通常用于降维和特征提取,RNN则用于序列建模。
差异:

复杂性与计算效率:GRU结构相对简单,参数较少,计算速度较快,适合资源有限的场景。LSTM虽然复杂,但理论上能更好地处理长期依赖问题。
记忆机制:LSTM通过独立的输入门、遗忘门和输出门精细控制信息流动,而GRU通过更新门和重置门合并了这些功能,牺牲了一定的控制精细度,换取了模型的简洁。
应用场景:对于需要细致控制信息遗忘和存储的复杂序列预测任务,LSTM可能更优;而对于追求效率和较简单序列模式识别,GRU可能是更好的选择。

4.部分核心程序
```IT =[1:length(INFO.TrainingLoss)];
LOSS=INFO.TrainingLoss;
Accuracy=INFO.TrainingRMSE;

figure;
plot(IT(1:1:end),LOSS(1:1:end));
xlabel('epoch');
ylabel('LOSS');

figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('训练样本真实值', '训练样本预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('训练样本预测样本')
ylabel('训练样本预测误差')
grid on
ylim([-50,50]);
ERR1=mean(abs(Tat_train-T_sim1'));
title(['误差均值:',num2str(ERR1)]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.99,0.4,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('测试样本真实值', '测试样本预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('测试样本预测样本')
ylabel('测试样本预测误差')
grid on
ylim([-50,50]);
ERR2=mean(abs(Tat_test-T_sim2'));
title(['误差均值:',num2str(ERR2)]);

save R1.mat

```

相关文章
|
1月前
|
机器学习/深度学习
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
【从零开始学习深度学习】23. CNN中的多通道输入及多通道输出计算方式及1X1卷积层介绍
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
1天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
15 9
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
14 1
|
23天前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
23天前
|
机器学习/深度学习
RNN、LSTM、GRU神经网络构建人名分类器(二)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
23天前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
25天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
43 6
|
10天前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
1月前
|
机器学习/深度学习 算法
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。

热门文章

最新文章