Matplotlib数据可视化(四)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: Matplotlib数据可视化(四)

1.在绘图中显示公式


在Matplotlib中可以使用LaTex的命令来编辑公式,只需要在字符串前面加一个'r'即可。


示例1:


import numpy as np
import matplotlib.pyplot as plt
plt.xlim([1,4])
plt.ylim([1,3])
plt.text(2,2,r'$ \alpha \beta \pi \lambda \omega $',size=20)
plt.title(r'$ \sum_{n=1}^\infty -e^{n\pi} $',fontsize=15)
plt.show()


结果图:


199ba13987b3a382ec0828eb31c6583d_edc2740facb8427ea002aa0485d7d7bd.png


2.绘图文本注释


绘图时可以通过text函数在指定位置(x,y)加入文本注释,也可以利用annotate()在图中实现带有指向型的文本注释。函数调用格式如下:


plt.text(x,y,s,fontdict=None,**kwargs)
plt.annotate(s,xy,*args,**kwargs)
#其中,x,y表示显示的文本的坐标位置,s表示显示的字符串


示例2:


import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False 
%matplotlib inline
fig=plt.figure()
ax1=fig.add_subplot(121)
t=np.arange(0.0,5,0.01)
s=np.sin(2*np.pi*t)
ax1.plot(t,s,lw=2)
bbox=dict(boxstyle='round',fc='white')
plt.annotate('local max',xy=(2.3,1),xytext=(3,1.5),
arrowprops=dict(facecolor='black',edgecolor='red',headwidth=7,width=2),bbox=bbox)
#arrowstyle箭头类型,arrowstyle="->",connectionstyle="arc3"指的是xy与xytext之间的连接类型
bbox_prop=dict(fc='white')
ax1.set_ylabel('Y',fontsize=12)
ax1.set_xlabel('X',fontsize=12)
ax1.set_ylim(-2,2)
ax1.text(1,1.2,'max',fontsize=18)
ax1.text(1.2,-1.8,'$y=sin(2*np.pi*t)$',bbox=bbox,rotation=10,alpha=0.8)
ax2=fig.add_subplot(122)
x=np.linspace(0,10,200)
y=np.sin(x)
ax2.plot(x,y,linestyle='-.',color='purple')
ax2.annotate(s='Here I am',xy=(4.8,np.sin(4.8)),xytext=(3.7,-0.2),weight='bold',color='k',
             arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'),
            bbox=dict(boxstyle='round,pad=0.5',fc='yellow', ec='k',lw=1 ,alpha=0.8))
ax2.set_ylim(-1.5,1.5)
ax2.set_xlim(0,10)
bbox=dict(boxstyle='round',ec='red',fc='white')
ax2.text(6,-1.9,'$y=sin(x)$',bbox=dict(boxstyle='square',facecolor='white',ec='black'))
ax2.grid(ls=":",color='gray',alpha=0.5)
#设置水印(带方框的水印)
ax2.text(4.5,1,'NWNU',fontsize=15,alpha=0.3,color='gray',bbox=dict(fc="white",boxstyle='round',edgecolor='gray',alpha=0.3))
plt.show()


结果图:


4ebf6126db1581add7807a7127426e39_566002f014b24b698a9e782837d4fa59.png



相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
58 1
|
1月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
2月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
126 3
|
2月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
30 0
|
3月前
|
数据可视化 数据挖掘 开发者
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
35 4
|
3月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
62 16
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
51 2
|
3月前
|
数据可视化 数据挖掘 API
使用Python进行数据可视化:探索Matplotlib和Seaborn库
【9月更文挑战第19天】在数据科学领域,将复杂的数据集转换成直观、易懂的图形是一项基本而关键的技能。本文旨在通过Python编程语言介绍两个强大的数据可视化库——Matplotlib和Seaborn,以及它们如何帮助数据分析师和研究人员揭示数据背后的故事。我们将从基础概念讲起,逐步深入到高级技巧,确保无论读者的背景如何,都能获得必要的知识和启发,以在自己的项目中实现有效的数据可视化。
|
3月前
|
数据可视化 数据挖掘 Python
惊呆了!Python数据分析师如何用Matplotlib、Seaborn秒变数据可视化大师?
在数据驱动时代,分析师们像侦探一样在数字海洋中寻找线索,揭示隐藏的故事。数据可视化则是他们的“魔法棒”,将复杂数据转化为直观图形。本文将带你探索Python数据分析师如何利用Matplotlib与Seaborn这两大神器,成为数据可视化大师。Matplotlib提供基础绘图功能,而Seaborn在此基础上增强了统计图表的绘制能力,两者结合使数据呈现更高效、美观。无论是折线图还是箱形图,这两个库都能助你一臂之力。
48 4
|
3月前
|
数据可视化 数据挖掘 数据处理
Python中数据可视化的魔法——使用Matplotlib和Pandas
【9月更文挑战第5天】在Python的世界里,数据可视化是连接复杂数据与人类直觉的桥梁。本篇文章将带领读者探索如何使用Matplotlib和Pandas这两个强大的库来揭示数据背后的故事。我们将从基础概念开始,逐步深入到高级技巧,让每一位读者都能轻松创建引人入胜的数据可视化图表,使数据分析变得既直观又有趣。
99 14