常见图表及散点图 | Python 数据可视化库 Matplotlib 快速入门之十三

简介: Matplotlib能够绘制折线图、散点图、柱状图、直方图、饼图。我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。

上一节:折线图应用场景

散点图(scatter)

学习目标

  • 目标

    。掌握常见统计图及其意义
    。绘制散点图
  • 应用

    。探究不同变量之间的关系
  • 内容预览

    。2.3.1常见图形种类及意义

    。2.3.2散点图绘制

    。2.3.3散点图应用场景
    

Matplotlib能够绘制折线图、散点图、柱状图、直方图、饼图。
我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。

常见图形种类及意义

  • 折线图 plot :以折线的上升或下降来表示统计数量的增减变化的统计图
    特点:能够显示数据的变化趋势,反映数据的变化情况。(变化)

image.png

  • 散点图 scatter :用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。
    特点:判断数据之间是否存在数量关联趋势,展示离群点(分布规律)

image.png

  • 柱状图 bar :排列在工作表的行或列中的数据可以绘制在柱状图中。
    特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

image.png

  • 直方图 histogram :由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据范围,纵轴表示分布情况。
    特点:绘制连续性的数据展示一组或者多组数据的分布情况。(统计)

image.png

  • 饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。
    特点:分类数据的占比情况。(占比)

image.png

散点图绘制

示例:
需求:探究房屋面积和房屋价格的关系
房屋面积数据:

x=[225.98,247.07,253.14,457.85,241.58,
301.01,20.67,288.64,163.56,120.06,
207.83,342.75,147.9,53.06,224.72,29.51,
21.61,483.21,245.25,399.25,343.35]

房屋价格数据:

y=[196.63,203.88,210.75,372.74,202.41,
247.61,24.9,239.34,140.32,104.15,176,
84,288.23,128.79,49.64,191.74,33.1,
30.74,400.02,205.35,330.64,283.45]

代码:

#1、准备数据
x=[225.98,247.07,253.14,457.85,241.58,
301.01,20.67,288.64,163.56,120.06,
207.83,342.75,147.9,53.06,224.72,29.51,
21.61,483.21,245.25,399.25,343.35]

y=[196.63,203.88,210.75,372.74,202.41,
247.61,24.9,239.34,140.32,104.15,176,
84,288.23,128.79,49.64,191.74,33.1,
30.74,400.02,205.35,330.64,283.45]

#2、创建画布
plt.figure(fig size=(20, 8) , dpi=80)

#3、绘制图像
plt.scatter(x, y)

#4、显示图像
plt.show()

执行结果为:
image.png

散点图应用场景

探究不同变量之间的内在关系。

配套视频课程点击这里查看

学习更多有关内容,请订阅 Python学习站 官方技术圈!

相关文章
|
1天前
|
数据采集 JSON 测试技术
如何在Python中高效实现CSV到JSON的数据转换
在实际项目中,数据格式转换是常见问题,尤其从CSV到JSON的转换。本文深入探讨了多种转换方法,涵盖Python基础实现、数据预处理、错误处理、性能优化及调试验证技巧。通过分块处理、并行处理等手段提升大文件转换效率,并介绍如何封装为命令行工具或Web API,实现自动化批量处理。关键点包括基础实现、数据清洗、异常捕获、性能优化和单元测试,确保转换流程稳定高效。
102 82
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
314 10
|
7天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
1天前
|
数据采集 存储 前端开发
用Python抓取亚马逊动态加载数据,一文读懂
用Python抓取亚马逊动态加载数据,一文读懂
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
60 9
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
108 8
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。

热门文章

最新文章