Python代码实现-主成分分析(PCA)降维及故障诊断中的T2和SPE统计量Matplotlib出图|Python技能树征题

简介: Python代码实现-主成分分析(PCA)降维及故障诊断中的T2和SPE统计量Matplotlib出图|Python技能树征题

PCA降维代码及T2和SPE统计量Matplotlib出图

PCA降维

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。

image.png

image.png

T2的计算

image.png

基本原理见 这里

故障判断

如系统正常运行,则样本的T2值应该满足T2 < Tα ,反之,可认为出现故障。

SPE(Q统计量)的计算

image.png

基本原理见 这里

故障判断

如系统正常运行,则样本的SPE值应该满足SPE < Qα ,反之,可认为出现故障。

Python程序如下

下面是封装成function的块

可直接调用

传入你需要训练的数据集即可

注意数据集最好为 .xls 后缀

def PCA_x(train_file_name, test_file_name, num_name):
    train_data = pd.read_excel(train_file_name, sheet_name=num_name)    # 导入训练数据
    test_data = pd.read_excel(test_file_name, sheet_name=num_name)     # 导入测试数据
    # *****************使用pandas方法读取样本数据功能模块(结束)*********************
    m = train_data.shape[1];  # 获取数据表格的列数
    n = train_data.shape[0];  # 获取数据表格的行数
    # ******************数据标准化处理(开始)*********************
    S_mean = np.mean(train_data, axis=0)  # 健康数据矩阵的列均值
    S_mean = np.array(S_mean)  # 健康数据的列均值,narry数据类型
    S_var = np.std(train_data, ddof=1);  # 健康数据矩阵的列方差,默认ddof=0表示对正态分布变量的方差的最大似然估计,ddof=1提供了对无限总体样本的方差的无偏估计(与Matlab一致)
    S_var[S_var == 0.0] = 0.0000000000000001  # 将集合S_var中的0替换为0.0000000000000001
    S_var = np.array(S_var)  # 健康数据的列方差,narry数据类型
    train_data -= S_mean  # 求取矩阵X的均值
    train_data /= S_var  # 求取矩阵X的方差
    train_data = np.where(train_data < 4.0e+11, train_data, 0.0)  # 把标准化后的矩阵X中的0替换为0.0000000000000001
    X_new = train_data;  # 求得标准化处理后的矩阵X_new
    # ******************求矩阵Y的协方差矩阵Z*********************
    X_new = np.transpose(X_new);  # 对矩阵进行转秩操作
    Z = np.dot(X_new, train_data / (n - 1))  # 求取协方差矩阵Z
    # ******************计算协方差矩阵Z的特征值和特征向量*********************
    a, b = np.linalg.eig(Z)  ##特征值赋值给a,对应特征向量赋值给b
    lambda1 = sorted(a, reverse=True)  # 特征值从大到小排序
    lambda_i = [round(i, 3) for i in lambda1]  # 保留三位小数
    print('lambda特征值由大到小排列:', lambda_i)
    # 计算方差百分比
    sum_given = 0  # 设置初值为0
    sum_given = sum(lambda_i)
    variance_hud = []  # 设置存放方差百分比的矩阵
    for i in tqdm(range(m)):
        if i <= m:
            variance_hud.append(lambda_i[i] / sum_given)
        else:
            break
    variance_hud = [round(i, 3) for i in variance_hud]  # 保留三位小数
    print('方差百分比从大到小排序:', variance_hud)
    # 累计贡献率
    leiji_1 = []
    new_value = 0
    for i in tqdm(range(0, m)):
        if i <= m:
            new_value = new_value + variance_hud[i]
            leiji_1.append(new_value)
        else:
            break
    print('累计贡献率:', leiji_1)
    # ******************主元个数选取 *********************
    totalvar = 0   # 累计贡献率,初值0
    for i in tqdm(range(m)):
        totalvar = totalvar + lambda1[i] / sum(a)  # 累计贡献率,初值0
        if totalvar >= 0.85:
            k = i + 1  # 确定主元个数
            break  # 跳出for循环
    PCnum = k  # 选取的主元个数
    PC = np.eye(m, k)  # 定义一个矩阵,用于存放选取主元的特征向量
    for j in tqdm(range(k)):
        wt = a.tolist().index(lambda1[j])  # 查找排序完成的第j个特征值在没排序特征值里的位置。
        PC[:, j:j + 1] = b[:, wt:wt + 1]  # 提取的特征值对应的特征向量
    print('成分矩阵:', PC)
    print('贡献率85%以上的主元个数为:', k)
    df_cfjz = pd.DataFrame(PC)
    # ******************根据建模数据求取 T2 阈值限 *********************
    # ******************置信度 = (1-a)% =(1-0.05)%=95% *************
    F = f.ppf(1 - 0.05, k, n - 1)  # F分布临界值
    T2 = k * (n - 1) * F / (n - k)  # T2求取
    # ****************** 健康数据的 SPE 阈值限求解  *********************
    ST1 = 0  # 对应SPE公式中的角1初值
    ST2 = 0  # 对应SPE公式中的角2初值
    ST3 = 0  # 对应SPE公式中的角3初值
    for i in range(k - 1, m):
        ST1 = ST1 + lambda1[i]  # 对应SPE公式中的角1
        ST2 = ST2 + lambda1[i] * lambda1[i]  # 对应SPE公式中的角2
        ST3 = ST3 + lambda1[i] * lambda1[i] * lambda1[i]  # 对应SPE公式中的角3
    h0 = 1 - 2 * ST1 * ST3 / (3 * pow(ST2, 2))
    Ca = 1.6449
    SPE = ST1 * pow(Ca * pow(2 * ST2 * pow(h0, 2), 0.5) / ST1 + 1 + ST2 * h0 * (h0 - 1) / pow(ST1, 2),
                    1 / h0)  # 健康数据SPE计算
    # ******************测试样本数据*********************
    m1 = test_data.shape[1];  # 获取数据表格的列数
    n1 = test_data.shape[0];  # 获取数据表格的行数
    test_data = np.array(test_data)  # 将DataFrame数据烈性转化为ndarray类型,使得数据矩阵与Matlab操作一样。
    I = np.eye(m)  # 产生m*m的单位矩阵
    PC1 = np.transpose(PC)  # PC的转秩
    SPEa = np.arange(n1).reshape(1, n1)  # 定义测试数据的SPE矩阵,为正数矩阵
    SPEa = np.double(SPEa)  # 将正数矩阵,转化为双精度数据矩阵
    TT2a = np.arange(n1).reshape(1, n1)  # 定义测试数据的T2矩阵,为正数矩阵
    TT2a = np.double(TT2a)  # 将正数矩阵,转化为双精度数据矩阵
    DL = np.diag(lambda1[0:k])  # 特征值组成的对角矩阵
    DLi = np.linalg.inv(DL)  # 特征值组成的对角矩阵的逆矩阵
    # ******************绘制结果 *********************
    # mpl.rcParams['font.sans-serif'] = ['SimHei']  # 在图形中显示汉字
    for i in range(n1):
        xnew = (test_data[i, :] - S_mean) / S_var;  # 对应 Matlab程序:xnew=(Data2(i,1:m)-S_mean)./S_var;
        # 以下是实现Matlb程序:  err(1,i)=xnew*(eye(14)-PC*PC')*xnew';
        xnew1 = np.transpose(xnew)  # xnew的转秩
        PC1 = np.transpose(PC)  # PC的转秩
        XPC = np.dot(xnew, PC)  # 矩阵xnew与PC相乘
        XPCPC1 = np.dot(XPC, PC1)  # 矩阵XPC与PC1相乘
        XXPCPC1 = xnew - XPCPC1  # 矩阵xnew减去XPCPC1
        SPEa[0, i] = np.dot(XXPCPC1, XXPCPC1)  # 矩阵XXPCPC1与XXPCPC1相乘
        XPi = np.dot(XPC, DLi)  # 矩阵XPC与DLi相乘
        XPiP = np.dot(XPi, PC1)  # 矩阵XPi与PC1相乘
        TT2a[0, i] = np.dot(XPiP, xnew1)  # 矩阵XPiP与xnew1相乘
    Sampling = r_[0.:n1]  # 产生的序列值式0到n1
    SPE1 = SPE * ones((1, n1))  # 产生SPE数值相同的矩阵
    print('spe统计量的值:', SPEa)
    # df_spe = pd.DataFrame(SPEa.T)
    new_SPE = SPEa.T
    # df_spe.to_csv('SPE值.csv')     # 将SPE值保存成.csv
    T21 = T2 * ones((1, n1))  # 产生T2数值相同的矩阵
    print('t2统计量的值:', TT2a)
    # df_T2 = pd.DataFrame(TT2a.T)
    new_TT = TT2a.T
    # df_T2.to_csv('T2值.csv')       # 将T2值保存成.csv
    return new_SPE, new_TT, Sampling, TT2a, T21, SPEa, SPE1, n1, T2, SPE, m, variance_hud, leiji_1, df_cfjz

上面程序会把T2和SPE的值保存在后台,且每次有超过阈值会打标签,以 label 保存结果在后台。

返回值有好几个,可用作其他用处,各取所需。

下面给出T2和SPE制图Python程序:

# 可视化T2和SPE
def graph_TT_SPE(Sampling, TT2a, T21, SPEa, SPE1, n1, T2, SPE, layer):
    figure(1)  # 画的第一张图
    plot(Sampling, TT2a[0, :], '*-', Sampling, T21[0, :], 'r-')  # 绘制出测试数据SPEa的数据集合,和健康数据训练得到的SPE阈值限
    xlabel('sample points')  # 给X轴加标注
    ylabel('T^2')  # 给Y轴加标注
    legend(['T^2 value', 'T^2 limit'])  # 为绘制出的图形线条添加标签注明
    title("T^2 statistic" + layer)  # 绘制的图形主题为“SPE统计量”
    figure(2)
    plot(Sampling, SPEa[0, :], '*-', Sampling, SPE1[0, :], 'r-')  # 绘制出测试数据TT2a的数据集合,和健康数据训练得到的T2阈值限
    xlabel('sample points')  # 给X轴加标注
    ylabel('SPE')  # 给Y轴加标注
    legend(['SPE value', 'SPE limit'])  # 为绘制出的图形线条添加标签注明
    title("SPE statistic" + layer)  # 绘制的图形主题为“SPE统计量”
    show()  # 显示绘制的图形
    # 循环对象TT2a,SPEa,循环基线T2,SPE
    sum1 = 0
    for ij in range(n1):  # 对测试样本个数进行循环
        if ((TT2a[0, ij] <= T2) & (SPEa[0, ij] <= SPE)):  # 判断各个值是否小于阈值线
            TT2a[0, ij] = 0  # 将小于阈值线的样本点位置上的数置为0
            SPEa[0, ij] = 0  # 将小于阈值线的样本点位置上的数置为0
        else:
            TT2a[0, ij] = 1  # 将小于阈值线的样本点位置上的数置为1
            SPEa[0, ij] = 1  # 将小于阈值线的样本点位置上的数置为1
            sum1 += 1
            # print(i)#输出有故障的样本点
    print(sum1)
    d1 = pd.DataFrame(TT2a.T)
    d1['label'] = d1[0]
    d1.drop(0, axis=1, inplace=True)
    d1.to_csv('label.csv', index=False)
    print(d1.sum())
    print(SPEa)

上面 layer 是我为了主程序循环,每次出图能够传入不同层的数据,可自行修改。

运行效果如下:

T2结果

image.png

SPE结果

image.png

在第二部分制图,样式、颜色、图例、坐标等均可自行Matplot进行修改。

完整程序(功能很多分量很大):

主成分分析PCA降为及故障诊断T2和SPE统计量出图Python.py

另外还有个MATLABPCA程序:

超全PCA_ICA_SFA算法程序集合

Reference:

(1):主成分分析(PCA)原理详解


https://blog.csdn.net/program_developer/article/details/80632779


(2):主成分分析(PCA)原理与故障诊断(SPE、T^2以及结合二者的综合指标)-MATLAB实现


https://blog.csdn.net/u013829973/article/details/77981701


(3):基于PCA的线性监督分类的故障诊断方法-T2与SPE统计量的计算


https://blog.csdn.net/And_ZJ/article/details/90576240


(4):3多变量统计故障诊断方法


https://wenku.baidu.com/view/b9ef2df9dd3383c4bb4cd2e0.html


(5):PCA故障诊断步骤


https://wenku.baidu.com/view/f8b6c51c08a1284ac9504339.html


相关文章
|
3月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
53 1
|
17天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
25天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
53 5
|
29天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
50 5
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
Python量化炒股常用的Matplotlib包
Python量化炒股常用的Matplotlib包
|
2月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
105 3
|
3月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
65 10
|
2月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
29 0
|
3月前
|
数据可视化 数据挖掘 开发者
数据可视化新纪元!Python + Matplotlib + Seaborn,让你的数据故事生动起来!
在这个数据可视化的新纪元,让我们充分发挥 Python 的优势,用精彩的图表讲述数据背后的故事,为决策提供有力的支持,为交流带来清晰的视角。
33 4