python生成可视化数据(matplotlib)进阶版

简介: 上期我们讲到如何用matplotlib模块将表格里的数据转换成可视化的折线图,但是,这里会有一个问题,表格里的数据是死的,是我随手创建的。在这一期,我将讲解如何通过requests+matplotlib等编写一个真实数据的可视化内容。

 上期我们讲到如何用matplotlib模块将表格里的数据转换成可视化的折线图,但是,这里会有一个问题,表格里的数据是死的,是我随手创建的。在这一期,我将讲解如何通过requests+matplotlib等编写一个真实数据的可视化内容。

今天就来统计一下某网站上作者总榜前20名作者的粉丝数吧

首先,第一步,通过requests模块获取相应的数据

我们先确定我们需要什么数据 1.作者名称   2,作者粉丝数

一,通过fiddler抓包,找到哪个接口有我们想要的数据

image.gif编辑

二,将抓取到的接口通过python进行请求

这一步我们将抓取到的内容通过requets模块请求出来 然后获取数据,我将作者名称作为折线图的x轴,将粉丝数作为y轴。

image.gif

三,将抓取到的数据通过matplotlib模块转换为折线图

我们这里直接将我们获取到的内容传递给我们的matplotlib即可,看下实现代码吧

importrequestsimportmatplotlib.pyplotaspltheaders={
"accept": "application/json, text/plain, */*",
"accept-encoding": "gzip, deflate, br",
"referer": "https://blog.csdn.net/rank/list/total?spm=1001.2014.3001.5476",
"sec-ch-ua": '"Chromium";v="94", "Google Chrome";v="94", ";Not A Brand";v="99"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Windows"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36"}
a=requests.get(url="https://blog.csdn.net/phoenix/web/blog/all-rank?page=0&pageSize=20",headers=headers)
a.content.decode("utf-8")
x=[]
y=[]
print(a.json())
print(a.json()["data"]["allRankListItem"])
fornina.json()["data"]["allRankListItem"]:  #获取作者名称x.append(n["nickName"])
foriina.json()["data"]["allRankListItem"]:  #获取作者粉丝数y.append(i["fansCount"])
print(x)
print(y)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] =False#解决因为中文导致乱码现象fig=plt.figure(figsize=(30,8))  #由于内容太多 我们把画布放大,这样就不好导致内容太多出现重叠的问题plt.plot(x,y)##将我们解析到的x轴和y轴的内容放在这里,作为参数传递进去就ok啦plt.show()

image.gif

看下实现效果吧

image.gif编辑

可以支持内容放大的

ctrl+鼠标滑轮可以将图放大

image.gif编辑

这里我们可以看到粉丝数最多的是”一个处女座的程序猿“的粉丝数是最多的哦

同时,也可以用柱状图的内容显示,只要更改一个函数内容就行

image.gif编辑

看下柱状图效果吧

image.gif编辑

今天的分享就在这里,我们下次在进行内容进阶吧,欢迎关注哦 我们一起成长学习 拜拜。

相关文章
|
17天前
|
JSON API 数据格式
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
|
13天前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
16天前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
22天前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
1天前
|
数据可视化 前端开发 数据挖掘
使用Folium在Python中进行地图可视化:全面指南
Folium是基于Python的交互式地图可视化库,依托Leaflet.js实现地理空间数据展示。本文从安装、基础使用到高级功能全面解析Folium:包括创建地图、添加标记、保存文件,以及绘制热力图、多边形和Choropleth地图等高级操作。通过展示北京市景点与全球地震数据的实际案例,结合性能优化、自定义样式和交互性增强技巧,帮助用户掌握Folium的核心功能与应用潜力,为数据分析提供直观支持。
17 2
|
21天前
|
存储 数据采集 JSON
Python爬取某云热歌榜:解析动态加载的歌曲数据
Python爬取某云热歌榜:解析动态加载的歌曲数据
|
6月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
6月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
109 1
|
3月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
129 8
|
6月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
104 10

热门文章

最新文章