基于模板匹配算法的车牌数字字母识别matlab仿真,带GUI界面

简介: 基于模板匹配算法的车牌数字字母识别matlab仿真,带GUI界面

1.算法理论概述

   随着交通工具的普及,车辆数量快速增长,车辆管理变得越来越重要。在车辆管理中,车牌号码的自动识别是一个重要的环节。从传统的手工识别,到现在的自动化识别,车牌识别技术已经成为了一个热门的研究领域。其中,数字字母识别是车牌识别的重要组成部分。本文将介绍基于ORC模板匹配算法的车牌数字字母识别方法。

1.1算法原理

   ORC模板匹配算法是一种基于模板匹配的数字字母识别方法。该方法基于一组预定义的数字字母模板,通过计算待识别数字字母与模板的相似度,来确定待识别数字字母的类别。具体实现步骤如下:

1.2数据预处理

   将待识别的数字字母图像进行预处理,包括二值化、去噪等操作,以便提高识别精度。

1.3特征提取

   从预处理后的数字字母图像中,提取出一组特征向量,用于表示该数字字母的形态特征。常用的特征提取方法包括傅里叶描述符、轮廓描述符、哈尔描述符等。

1.4模板匹配

   将待识别数字字母的特征向量与预定义的数字字母模板的特征向量进行比较,计算它们之间的相似度。相似度的计算可以使用欧几里得距离、余弦相似度等方式。根据计算出的相似度,确定待识别数字字母的类别,并将结果输出。

   下面给出ORC模板匹配算法中常用的两种相似度计算方式及其公式:
   欧几里得距离是一种常用的距离度量方式,它可以用于计算两个向量之间的相似度。设向量a和向量b的维度均为n,则它们之间的欧几里得距离为:

d(a,b) = sqrt(sum((ai - bi) ^ 2)), i = 1, 2, ..., n

其中,ai和bi分别表示向量a和向量b的第i维元素。
余弦相似度是一种常用的相似度计算方式,它可以用于计算两个向量之间的相似度。设向量a和向量b的维度均为n,则它们之间的余弦相似度为:
cos(a,b) = dot(a,b) / (||a|| * ||b||)

其中,dot(a,b)表示向量a和向量b的点积,||a||表示向量a的模,||b||表示向量b的模。
下面给出ORC模板匹配算法的具体实现步骤。
将待识别的数字字母图像进行预处理,包括灰度化、二值化、去噪等操作。其中,灰度化可以采用RGB灰度化、加权平均法等方式;二值化可以采用固定阈值、自适应阈值等方式;去噪可以采用中值滤波、均值滤波等方式。
从预处理后的数字字母图像中,提取出一组特征向量,用于表示该数字字母的形态特征。常用的特征提取方法有以下几种:

(1)轮廓描述符(Contour Descriptor):该方法通过计算数字字母边缘的曲率和方向,生成一个轮廓向量,用于表示数字字母的形状特征。

(2)傅里叶描述符(Fourier Descriptor):该方法将数字字母的轮廓看作一个连续的曲线,通过傅里叶变换将其分解成若干个正弦和余弦波形,然后将这些波形的系数作为特征向量,用于表示数字字母的形态特征。

(3)Zernike矩(Zernike Moment):该方法通过将数字字母的轮廓投影到一组正交的基函数上,生成一组Zernike矩,用于表示数字字母的形态特征。
将待识别数字字母的特征向量与预定义的数字字母模板的特征向量进行比较,计算它们之间的相似度。相似度的计算可以使用欧几里得距离、余弦相似度等方式。具体实现步骤如下:
(1)定义一组预定义的数字字母模板,每个模板都具有一组特征向量。

(2)将待识别数字字母的特征向量与每个模板的特征向量进行比较,计算它们之间的相似度。

(3)选择相似度最高的模板,将其类别作为待识别数字字母的类别。

2.算法运行软件版本
matlab2022a

3.算法运行效果图预览

745eef78107ce2a4f2f7b1dc6693808a_82780907_202308102317360990385014_Expires=1691681257&Signature=42wrFFHyuPv%2BY3fL8hZJOs7cai0%3D&domain=8.png
4454a268be610db9d9b9c7adb26cc790_82780907_202308102317360990777332_Expires=1691681257&Signature=2CgYTGURG0eLYr%2FEVqbmIdn1G50%3D&domain=8.png

4.部分核心程序
```function r=controlling(NR)
% 找到纵坐标直方图中值为6的区间
[Q,W]=hist(NR(:,4));
ind=find(Q==6);

for k=1:length(NR)
C_5(k)=NR(k,2) * NR(k,4);
end
NR2=cat(2,NR,C_5');
[E,R]=hist(NR2(:,5),20);
Y=find(E==6);
if length(ind)==1% 如果纵坐标直方图中有且仅有一个纵坐标值出现次数为6
MP=W(ind);% 将该纵坐标值作为分割容器的中心位置
binsize=W(2)-W(1);% 计算容器的大小
container=[MP-(binsize/2) MP+(binsize/2)]; % 创建一个分割容器
r=takeboxes(NR,container,2); % 将位于容器内部的字符区域提取出来
elseif length(Y)==1
MP=R(Y);
binsize=R(2)-R(1);
container=[MP-(binsize/2) MP+(binsize/2)];
r=takeboxes(NR2,container,2.5);
elseif isempty(ind) || length(ind)>1% 如果分割容器为空
[A,B]=hist(NR(:,2),20);
ind2=find(A==6);
if length(ind2)==1
MP=B(ind2);
binsize=B(2)-B(1);
container=[MP-(binsize/2) MP+(binsize/2)];
r=takeboxes(NR,container,1);
else
container=guessthesix(A,B,(B(2)-B(1))); % 根据面积直方图和区间大小猜测分割容器的位置
if ~isempty(container)% 如果分割容器不为空,将位于容器内部的字符区域提取出来
r=takeboxes(NR,container,1);
elseif isempty(container)
container2=guessthesix(E,R,(R(2)-R(1)));
if ~isempty(container2) % 如果分割容器不为空,将位于容器内部的字符区域提取出来
r=takeboxes(NR2,container2,2.5);
else
r=[]; % 如果分割容器为空,返回空矩阵
end
end
end
end

function container=guessthesix(Q,W,bsize)

for l=5:-1:2
val=find(Q==l);
var=length(val);
if isempty(var) || var == 1% 如果出现次数为l的高度值的个数为空,或者等于1
if val == 1
index=val+1; % 计算要查找的位置
else
index=val;
end
if length(Q)==val% 如果要查找的位置是直方图的最后一个位置,将查找位置置为空
index=[];
end
if Q(index)+Q(index+1) == 6 % 如果查找位置及其相邻的位置出现次数之和等于6
container=[W(index)-(bsize/2) W(index+1)+(bsize/2)];% 创建一个分割容器
break;
elseif Q(index)+Q(index-1) == 6 % 如果查找位置及其前一个位置出现次数之和等于6
container=[W(index-1)-(bsize/2) W(index)+(bsize/2)]; % 创建一个分割容器
break;
end
else% 如果出现次数为l的高度值的个数大于1
for k=1:1:var
if val(k)==1 % 计算要查找的位置
index=val(k)+1;
else
index=val(k);
end
if length(Q)==val(k) % 如果要查找的位置是直方图的最后一个位置,将查找位置置为空
index=[];
end
if Q(index)+Q(index+1) == 6 % 如果查找位置及其相邻的位置出现次数之和等于6
container=[W(index)-(bsize/2) W(index+1)+(bsize/2)]; % 创建一个分割容器
break;
elseif Q(index)+Q(index-1) == 6 % 如果查找位置及其前一个位置出现次数之和等于6
container=[W(index-1)-(bsize/2) W(index)+(bsize/2)];% 创建一个分割容器
break;
end
end
if k~=var% 如果找到分割容器,退出循环
break;
end
end
end
if l==2% 如果循环结束后没有找到分割容器,将分割容器置为空
container=[];
end

function letter=readLetter(snap)

load NewTemplates% 加载新的模板
snap=imresize(snap,[42 24]);% 将图像缩放为指定大小
comp=[ ];% 初始化一个空数组
for n=1:length(NewTemplates)% 对于每个模板
sem=corr2(NewTemplates{1,n},snap);% 计算当前模板与图像的相关性
comp=[comp sem];% 将相关性值添加到数组中
end
vd=find(comp==max(comp));% 找到相关性值最大的位置
if vd==1 || vd==2% 根据不同的位置,将字母或数字赋值给letter变量
letter='A';
elseif vd==3 || vd==4
letter='B';
elseif vd==5
letter='C';
.......................................................................
else
letter='0';
end

function r=takeboxes(NR,container,chk)

takethisbox=[];% 初始化一个空数组
for i=1:size(NR,1)% 对于每个数字区域
if NR(i,(2chk))>=container(1) && NR(i,(2chk))<=container(2)% 如果数字区域的中心点在分割容器内部
takethisbox=cat(1,takethisbox,NR(i,:));% 将该数字区域添加到数组中
end
end
r=[];% 初始化一个空数组
for k=1:size(takethisbox,1)% 对于每个数字区域
var=find(takethisbox(k,1)==reshape(NR(:,1),1,[]));% 找到该数字区域的行号
if length(var)==1% 如果只有一个数字区域与该行匹配
r=[r var];% 将该数字区域的列号添加到数组中
else% 对于每个匹配的数字区域
for v=1:length(var)% 判断该数字区域的中心点是否在分割容器内部
M(v)=NR(var(v),(2chk))>=container(1) && NR(var(v),(2chk))<=container(2);
end
var=var(M);% 选出中心点在分割容器内部的数字区域
r=[r var];% 将这些数字区域的列号添加到数组中
end
end

```

相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18

热门文章

最新文章