PyTorch 神经网络模型可视化(Netron)

简介: PyTorch 神经网络模型可视化(Netron)

PyTorch 神经网络模型可视化(Netron

Netron 是一个用于可视化深度学习模型的工具,可以帮助我们更好地理解模型的结构和参数。

支持以下格式的模型存储文件:

格式 模板(文件) 免下载打开
ONNX squeezenet open
TensorFlow Lite yamnet open
TensorFlow chessbot open
Keras mobilenet open
TorchScript traced_online_pred_layer open
Core ML exermote open
Darknet yolo open

GitHub 链接:https://github.com/lutzroeder/netron

官网:https://netron.app


ONNX

(1)在 PyTorch 中,可以使用 torch.onnx.export 函数将模型导出为 ONNX 格式:

import torch
import netron
# 定义 PyTorch 模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.bn = torch.nn.BatchNorm2d(64)
        self.relu = torch.nn.ReLU(inplace=True)
        self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
# 创建模型实例并加载预训练权重
model = MyModel()
# 设置示例输入
input = torch.randn(1, 3, 32, 32)
# 将模型导出为 ONNX 格式
torch.onnx.export(model, input, './model/Test/onnx_model.onnx')  # 导出后 netron.start(path) 打开

(2)再使用 Netron 的 netron.start 指令打开导出的 ONNX 模型文件:

import netron
# 打开导出的 ONNX 模型文件
netron.start('./model/Test/onnx_model.onnx')
Serving './model/Test/onnx_model.onnx' at http://localhost:8080

将在浏览器中自动启动 Netron 工具,并对该模型文件进行可视化。

注意:

当模型被导出为 ONNX 格式,会在指定目录生成以 .onnx 为后缀的文件,只需将其上传至 Netron 官网 也可实现可视化:

在 Netron 中,可以查看模型的结构、参数和输入输出等信息。可以通过缩放、旋转和平移等操作来调整模型的可视化效果,以更好地理解模型的结构和参数。

torch.save

当使用 torch.save 对保存的模型进行可视化时:

# 保存模型
torch.save(model.state_dict(), './model/Test/saved_model.pt')
# 可视化
netron.start('./model/Test/saved_model.pt')

如下图,这种方式并不能显示该模型的详细信息:

所以: Netron 不支持 PyTorch 通过 torch.save 方式导出的模型文件。

torch.jit.script

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.script 先将模型转换为脚本,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:script
scripted_model = torch.jit.script(model)
# 保存模型
torch.jit.save(scripted_model, './model/Test/scripted_model.pth')
# 可视化
netron.start('./model/Test/scripted_model.pth')

torch.jit.trace

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.trace 先将模型转换为跟踪模型执行的工具,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:trace
traced_model = torch.jit.trace(model, torch.randn(1, 3, 32, 32))
# 保存模型
torch.jit.save(traced_model, './model/Test/traced_model.pth')
# 可视化
netron.start('./model/Test/traced_model.pth')

目录
相关文章
|
6月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
241 2
|
6月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
4月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
297 2
|
4月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
109 8
|
4月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
129 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
209 0
|
5月前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
255 0
|
8月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
1375 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
|
4月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
278 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节

推荐镜像

更多