PyTorch 神经网络模型可视化(Netron)

简介: PyTorch 神经网络模型可视化(Netron)

PyTorch 神经网络模型可视化(Netron

Netron 是一个用于可视化深度学习模型的工具,可以帮助我们更好地理解模型的结构和参数。

支持以下格式的模型存储文件:

格式 模板(文件) 免下载打开
ONNX squeezenet open
TensorFlow Lite yamnet open
TensorFlow chessbot open
Keras mobilenet open
TorchScript traced_online_pred_layer open
Core ML exermote open
Darknet yolo open

GitHub 链接:https://github.com/lutzroeder/netron

官网:https://netron.app


ONNX

(1)在 PyTorch 中,可以使用 torch.onnx.export 函数将模型导出为 ONNX 格式:

import torch
import netron
# 定义 PyTorch 模型
class MyModel(torch.nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.bn = torch.nn.BatchNorm2d(64)
        self.relu = torch.nn.ReLU(inplace=True)
        self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
        self.fc = torch.nn.Linear(64 * 8 * 8, 10)
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(-1, 64 * 8 * 8)
        x = self.fc(x)
        return x
# 创建模型实例并加载预训练权重
model = MyModel()
# 设置示例输入
input = torch.randn(1, 3, 32, 32)
# 将模型导出为 ONNX 格式
torch.onnx.export(model, input, './model/Test/onnx_model.onnx')  # 导出后 netron.start(path) 打开

(2)再使用 Netron 的 netron.start 指令打开导出的 ONNX 模型文件:

import netron
# 打开导出的 ONNX 模型文件
netron.start('./model/Test/onnx_model.onnx')
Serving './model/Test/onnx_model.onnx' at http://localhost:8080

将在浏览器中自动启动 Netron 工具,并对该模型文件进行可视化。

注意:

当模型被导出为 ONNX 格式,会在指定目录生成以 .onnx 为后缀的文件,只需将其上传至 Netron 官网 也可实现可视化:

在 Netron 中,可以查看模型的结构、参数和输入输出等信息。可以通过缩放、旋转和平移等操作来调整模型的可视化效果,以更好地理解模型的结构和参数。

torch.save

当使用 torch.save 对保存的模型进行可视化时:

# 保存模型
torch.save(model.state_dict(), './model/Test/saved_model.pt')
# 可视化
netron.start('./model/Test/saved_model.pt')

如下图,这种方式并不能显示该模型的详细信息:

所以: Netron 不支持 PyTorch 通过 torch.save 方式导出的模型文件。

torch.jit.script

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.script 先将模型转换为脚本,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:script
scripted_model = torch.jit.script(model)
# 保存模型
torch.jit.save(scripted_model, './model/Test/scripted_model.pth')
# 可视化
netron.start('./model/Test/scripted_model.pth')

torch.jit.trace

可参考:torch.jit.script 与 torch.jit.trace

使用 torch.jit.trace 先将模型转换为跟踪模型执行的工具,再使用 torch.jit.save 保存模型,最后进行可视化:

# TorchScript:trace
traced_model = torch.jit.trace(model, torch.randn(1, 3, 32, 32))
# 保存模型
torch.jit.save(traced_model, './model/Test/traced_model.pth')
# 可视化
netron.start('./model/Test/traced_model.pth')

目录
相关文章
|
22天前
|
消息中间件 存储 Serverless
函数计算产品使用问题之怎么访问网络附加存储(NAS)存储模型文件
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
22天前
|
Kubernetes 负载均衡 网络安全
Kubernetes 网络模型与实践
【8月更文第29天】Kubernetes(K8s)是当今容器编排领域的佼佼者,它提供了一种高效的方式来管理容器化应用的部署、扩展和运行。Kubernetes 的网络模型是其成功的关键因素之一,它支持服务发现、负载均衡和集群内外通信等功能。本文将深入探讨 Kubernetes 的网络模型,并通过实际代码示例来展示服务发现和服务网格的基本概念及其实现。
37 1
|
24天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
49 1
|
18天前
|
网络协议 数据安全/隐私保护 网络架构
计算机网络模型
【9月更文挑战第2天】
44 24
|
8天前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
14 1
|
16天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
19天前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
22 6
|
16天前
|
网络协议 安全 网络安全
C语言 网络编程(四)常见网络模型
这段内容介绍了目前被广泛接受的三种网络模型:OSI七层模型、TCP五层模型以及TCP/IP四层模型,并简述了多个网络协议的功能与特性,包括HTTP、HTTPS、FTP、DNS、SMTP、TCP、UDP、IP、ICMP、ARP、RARP及SSH协议等,同时提到了ssh的免费开源实现openssh及其在Linux系统中的应用。
|
24天前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
34 4