大神回归学界:何恺明宣布加入 MIT

简介: 大神回归学界:何恺明宣布加入 MIT

何恺明的目标是:探索面向复杂世界的智能。


「作为一位 FAIR 研究科学家,我将于 2024 年加入麻省理工学院(MIT)电气工程与计算机科学系 EECS 担任教职。」


AI 领域的著名学者,ResNet 发明人何恺明,最近在个人网站上宣布即将回归学界了。


恺明甚至换上了全新的头像。


在最近科技公司竞争大模型、AIGC 新增长点的背景下,何恺明选择投身研究,做出了一个有引领性的选择。


对此人们纷纷表示欢迎,「他的学生该有福了」:


不知道未来是否会有年轻一代学会何恺明大道至简的研究风格。


也有人表示,希望他在加入 MIT 之后仍可以和 Meta 保持紧密联系,因为即使贵如 MIT 也没有业界实验室那样丰富的 GPU 算力资源。


感叹之外,人们纷纷开始预测何恺明未来的科研方向。从他个人网站上的叙述来看:「通过计算机视觉问题的视角,我的目标是开发适用于各个领域的通用方法。我目前的研究重点是构建可以学习复杂世界表示的计算机模型,并探索面向复杂世界的智能。我研究的长期目标是通过更强大的人工智能来增强人类智能。」


这可能意味着与现实世界互动的 AI,是机器人?


众人聚焦的转会


何恺明的去向在四个月前成为了 AI 领域人人关注的话题。


今年 3 月,很多人发现 MIT 的网站上出现了一条特别演讲预告。


在 MIT 的 EECS,此类「特殊研讨会」通常是前来申请职位的学者进行的「面试」,其内容主要是展示求职者的研究成果。没想到作为学术明星的何恺明的一场小活动成为了大型追星现场,活动当天会议室爆满之后 MIT 不得不临时加开投屏房间,结果远程观看的房间依然爆满。


图片来自知乎


可见人们对于这位大神的认可度。


据参与活动的同学透露,在这场演讲过程中何恺明主要介绍了 ResNet、Faster R-CNN、Mask R-CNN、MoCo、MAE 等过去他完成的研究。另外还对未来进行了一定程度的展望,其中包括 AI 作为一个通用工具帮助各个科学领域开展研究,以及自监督学习的更广泛应用。


在 MIT 之行结束后,何恺明近期还曾在纽约大学、普林斯顿进行过演讲。


从高考状元到顶尖 AI 科学家


何恺明是我们耳熟能详的 AI 科学家之一,在计算机视觉领域没有人不知道他的大名。


2003 年,何恺明以标准分 900 分获得广东省高考总分第一,被清华大学物理系基础科学班录取。在清华物理系基础科学班毕业后,他进入香港中文大学多媒体实验室攻读博士学位,师从汤晓鸥。何恺明曾于 2007 年进入微软亚洲研究院视觉计算组实习,实习导师为孙剑博士。


2011 年博士毕业后,何恺明加入微软亚洲研究院工作任研究员。2016 年,何恺明加入 Facebook 人工智能实验室,任研究科学家至今。


何恺明的研究曾数次得奖。2009 年,汤晓鸥教授、孙剑博士和当时博士研究生在读的何恺明共同完成的论文《基于暗原色的单一图像去雾技术》拿到了国际计算机视觉顶会 CVPR 的最佳论文奖,也是该会议创办二十五年来首次有亚洲学者获得最高奖项。


汤晓鸥与何恺明


2016 年,何恺明凭借 ResNet 再获 CVPR 最佳论文奖,此外,他还有一篇论文进入了 CVPR2021 最佳论文的候选。何恺明还因为 Mask R-CNN 获得过 ICCV 2017 的最佳论文(Marr Prize),同时也参与了当年最佳学生论文的研究。


根据 Google Scholar 的统计,何恺明一共发表了 73 篇论文,H Index 数据为 67。截至 2023 年 7 月,何恺明的研究引用次数超过 46 万次,并且每年以超过 10 万次的速度增长。



这是个什么量级呢?简而言之,他加入 MIT 之后会立刻成为该校论文引用量最高的学者,不限学科,没有之一。


那些年,恺明发表过的「神作」


说起恺明大神的作品,最有名的就是 ResNet 了。这篇论文发表于七年前,迄今引用已经超过十七万。




《Deep Residual Learning for Image Recognition》在 2016 年拿下了计算机视觉顶级会议 CVPR 的最佳论文奖。该论文的四位作者何恺明、张祥雨、任少卿和孙剑如今在人工智能领域里都是响当当的名字,当时他们都是微软亚洲研究院的一员。



同样是大神级别的学者李沐曾经说过,假设你在使用卷积神经网络,有一半的可能性就是在使用 ResNet 或它的变种。


何恺明有关残差网络(ResNet)的论文解决了深度网络的梯度传递问题。这篇论文是 2019 年、2020 年和 2021 年 Google Scholar Metrics 中所有研究领域被引用次数最多的论文,并建立了现代深度学习模型的基本组成部分(例如在 Transformers、AlphaGo Zero、AlphaFold 中) )。


如今大模型都在使用的 transformer 的编码器和解码器,里面都有源自 ResNet 的残差链接。


「在 ResNet 之后就可以有效地训练超过百层的深度神经网络,把网络打得非常深,」在 2023 世界人工智能大会的演讲中,汤晓鸥对何恺明的学术贡献不吝赞美:「何恺明把神经网络做深了,谷歌把神经网络的入口拉大了,又深又大,才成为今天的大模型。」


2021 年 11 月,何恺明以一作身份发表论文《Masked Autoencoders Are Scalable Vision Learners》,提出了一种泛化性能良好的计算机视觉识别模型,同样是刚刚发表就成为了计算机视觉圈的热门话题。


一个初入 AI 领域的新人,在探索的过程中看到很多重要研究主要作者都是何恺明,经常会不由得感到惊讶。何恺明虽然长期身处业界,但科研态度一直被视为标杆 —— 他每年只产出少量一作文章,但一定会是重量级的,几乎没有例外。


我们也经常赞叹于何恺明工作的风格:即使是具有开创性的论文,其内容经常也是简明易读的,他会使用最直观的方式解释自己「简单」的想法,不使用 trick,也没有不必要的证明,有的只是美丽的直觉。


如今回归学界,期待恺明能带来更多惊艳之作。


参考内容:

https://www.csail.mit.edu/event/eecs-special-seminar-kaiming-he-pursuit-visual-intelligence

https://www.zhihu.com/question/588205714

相关文章
|
2月前
|
机器学习/深度学习 人工智能
CMU清华教LLM练成数学高手,LeanSTaR训练模型边思考边证明,登顶新SOTA
【9月更文挑战第2天】卡内基梅隆大学与清华大学的研究团队开发出名为LeanSTaR的语言模型,该模型结合形式化验证与机器学习技术,在数学证明上取得了重大突破,实现了类似人类数学家的思考和证明能力。这一成果不仅提升了数学证明任务的性能,尤其在复杂推理方面表现突出,还为数学研究和教育提供了有力支持。论文详细内容可访问 https://arxiv.org/abs/2407.10040。
52 12
|
4月前
|
数据采集 机器学习/深度学习 人工智能
AI小分子药物发现的百科全书,康奈尔、剑桥、EPFL等研究者综述登Nature子刊
【7月更文挑战第12天】康奈尔、剑桥及EPFL科学家合作,详述AI在药物发现中的突破与挑战[^1]。AI现用于新化合物生成、现有药物优化及再利用,加速研发进程。尽管取得进展,可解释性不足、数据质量和伦理监管仍是待解难题。 [^1]: [论文链接](https://www.nature.com/articles/s42256-024-00843-5)
65 3
|
6月前
|
机器学习/深度学习 人工智能
斯坦福最新研究:ICLR/NeurIPS等竟有16.9%评审是ChatGPT生成
斯坦福大学研究发现,顶级学术会议评审内容中有一部分可能由大型语言模型如ChatGPT生成,揭示AI对学术领域的影响,引发学术诚信和评审质量关注。研究团队通过新框架“分布式GPT量化”更准确检测AI参与度,发现AI在评审紧迫、无引用及低互动场景中更常见,可能影响评审质量和多样性。尽管AI能提升效率,但也可能导致同质化和学术不端。该研究强调了在利用AI的同时保持学术评审质量的重要性。
54 3
斯坦福最新研究:ICLR/NeurIPS等竟有16.9%评审是ChatGPT生成
|
机器学习/深度学习 数据挖掘 PyTorch
ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE
ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE
134 0
|
机器学习/深度学习 存储 人工智能
对比学习引领弱标签学习新SOTA,浙大新研究入选ICLR Oral
对比学习引领弱标签学习新SOTA,浙大新研究入选ICLR Oral
153 0
|
机器学习/深度学习 人工智能 自然语言处理
稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习|ICLR 2023
稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习|ICLR 2023
378 0
|
存储 机器学习/深度学习 编解码
CVPR录用+NTIRE冠军!清华提出首个高光谱图像重建Transformer
CVPR录用+NTIRE冠军!清华提出首个高光谱图像重建Transformer
434 0
|
机器学习/深度学习 算法 C++
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习
深度学习和人工神经网络已经从大脑获得灵感,但大部分是在计算表现形式上的灵感(大多是生物学的,比如 spike 的存在留待考虑)。然而,如今缺少的是对生物神经元中存在的学习规则的一个可信的机器学习说明,从而能够解释一个深度神经网络有效的联合训练,也就是通过一个神经连接长链说明信任分配(credit assignment)。因此,解决信任分配难题也意味着确认神经元与权重,这二者与得到想要的输出和改变参数有关。反向传播提供了一个机器学习答案,然而就像下一段讨论的那样,它并非生物学上可信的。寻找一个生物学上可信的机器学习方法进行深度网络中的信任分配是一个主要的长期问题,也是此论文贡献的方向。
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习
|
机器学习/深度学习 数据挖掘 计算机视觉
Alexnet论文泛读:深度学习CV领域划时代论文具有里程碑意义NeurIPS2012
Alexnet论文泛读:深度学习CV领域划时代论文具有里程碑意义NeurIPS2012
Alexnet论文泛读:深度学习CV领域划时代论文具有里程碑意义NeurIPS2012
|
机器学习/深度学习 运维 算法
ICLR和CVPR双料大作:谷歌自监督学习框架,夺榜多个异常检测数据集
ICLR2021和CVPR2021双料大作,谷歌最新成果,融合单类分类与深度表示的自监督学习的异常检测算法,超越多个数据集基准。
440 0
ICLR和CVPR双料大作:谷歌自监督学习框架,夺榜多个异常检测数据集
下一篇
无影云桌面