ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE

简介: ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE


日本北海道大学提出 Gromov-Wasserstein Autoencoders(GWAE),将变分自编码器 Variational Autoencoder (VAE) 重写为数据和表示之间的最优传输的灵活表征学习框架。


学习高维数据的低维表示是无监督学习中的基本任务,因为这种表示简明地捕捉了数据的本质,并且使得执行以低维输入为基础的下游任务成为可能。变分自编码器(VAE)是一种重要的表示学习方法,然而由于其目标控制表示学习仍然是一个具有挑战性的任务。虽然 VAE 的证据下界(ELBO)目标进行了生成建模,但学习表示并不是直接针对该目标的,这需要对表示学习任务进行特定的修改,如解纠缠。这些修改有时会导致模型的隐式和不可取的变化,使得控制表示学习成为一个具有挑战性的任务。为了解决变分自编码器中的表示学习问题,本文提出了一种称为 Gromov-Wasserstein Autoencoders(GWAE)的新型生成模型。GWAE 提供了一种基于变分自编码器(VAE)模型架构的表示学习新框架。与传统基于 VAE 的表示学习方法针对数据变量的生成建模不同,GWAE 通过数据和潜在变量之间的最优传输获得有益的表示。Gromov-Wasserstein(GW)度量使得在不可比变量之间(例如具有不同维度的变量)进行这种最优传输成为可能,其侧重于所考虑的变量的距离结构。通过用 GW 度量替换 ELBO 目标,GWAE 在数据和潜在空间之间执行比较,直接针对变分自编码器中的表示学习(如图 1)。这种表示学习的表述允许学习到的表示具有特定的被认为有益的属性(例如分解性),这些属性被称为元先验。图 1 VAE 与 GWAE 的区别本研究目前已被 ICLR 2023 接受。

方法介绍

数据分布和潜在先验分布之间的GW目标定义如下 :


这种最优传输代价的公式可以衡量不可比空间中分布的不一致性;然而对于连续分布,由于需要对所有耦合进行下确界,计算精确的 GW 值是不切实际的。为了解决这个问题,GWAE 解决了一个松弛的优化问题,以此来估计和最小化 GW 估计量,其梯度可以通过自动微分进行计算。松弛目标是估计的 GW 度量和三个正则化损失的总和,可以在可微编程框架(如 PyTorch)中全部实现。该松弛目标由一个主要损失和三个正则化损失组成,即主要估计的 GW 损失,基于 WAE 的重构损失,合并的充分条件损失以及熵正则化损失。这个方案还可以灵活地定制先验分布,以将有益的特征引入到低维表示中。具体而言,该论文引入了三种先验族群,分别是:神经先验 (NP) 在具有 NP 的 GWAEs 中,使用全连接的神经网络构建先验采样器。该先验分布族群在潜在变量方面做出了更少的假设,适用于一般情况。因子化神经先验 (FNP)在具有 FNP 的 GWAEs 中,使用本地连接的神经网络构建采样器,其中每个潜在变量的条目独立生成。这种采样器产生一个因子化的先验和一个逐项独立的表示,这是代表性元先验、解纠缠的一种突出方法。高斯混合先验 (GMP) 在 GMP 中,定义为几个高斯分布的混合物,其采样器可以使用重参数化技巧和 Gumbel-Max 技巧来实现。GMP 允许在表示中假设簇,其中先验的每个高斯组件都预计捕捉一个簇。实验及结果该研究对 GWAE 进行了两种主要元先验的经验评估解纠缠和聚类解纠缠 研究使用了 3D Shapes 数据集和 DCI 指标来衡量 GWAE 的解纠缠能力。结果表明,使用 FNP 的 GWAE 能够在单个轴上学习对象色调因素,这表明了 GWAE 的解纠缠能力。定量评估也展示了 GWAE 的解纠缠表现。



聚类 为了评估基于聚类元先验获得的表征,该研究进行了一项 Out-of-Distribution(OoD)检测。MNIST 数据集被用作 In-Distribution(ID)数据,Omniglot 数据集被用作 OoD 数据。虽然 MNIST 包含手写数字,但 Omniglot 包含不同字母的手写字母。在这个实验中,ID 和 OoD 数据集共享手写图像领域,但它们包含不同的字符。模型在 ID 数据上进行训练,然后使用它们学到的表征来检测 ID 或 OoD 数据。在 VAE 和 DAGMM 中,用于 OoD 检测的变量是先验的对数似然,而在 GWAE 中,它是 Kantorovich potential。GWAE 的先验是用 GMP 构建的,以捕捉 MNIST 的簇。ROC 曲线显示了模型的 OoD 检测性能,其中所有三个模型都实现了近乎完美的性能;然而,使用 GMP 构建的 GWAE 在曲线下面积(AUC)方面表现最佳。

此外该研究对 GWAE 进行了生成能力的评估。作为基于自动编码器的生成模型的性能 为了评估 GWAE 在没有特定元先验的情况下对一般情况的处理能力,使用 CelebA 数据集进行了生成性能的评估。实验使用 FID 评估模型的生成性能,使用 PSNR 评估自编码性能。GWAE 使用 NP 获得了第二好的生成性能和最佳的自编码性能,这表明其能够在其模型中捕捉数据分布并在其表示中捕捉数据信息的能力。

总结

  • GWAE 是基于 Gromov-Wasserstein 度量构建的变分自编码器生成模型,旨在直接进行表示学习。
  • 由于先验仅需要可微分样本,因此可以构建各种先验分布设置来假设元先验(表示的理想特性)。
  • 在主要元先验上的实验以及作为变分自编码器的性能评估表明了 GWAE 公式的灵活性和 GWAE 的表示学习能力。
  • 第一作者 Nao Nakagawa 个人主页:https://ganmodokix.com/note/cv
  • 日本北海道大学多媒体实验室主页:https://www-lmd.ist.hokudai.ac.jp/
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
61 2
|
6月前
|
测试技术 计算机视觉
斯坦福新研究提升大模型长视频理解能力
【2月更文挑战第29天】斯坦福大学研究团队开发的VideoAgent系统在长视频理解上取得突破,提升了大型语言模型处理视频内容的能力。该系统通过模拟人类认知过程,以高效(平均8.4帧)实现高准确率(54.1%和71.3%的零样本准确率),在EgoSchema和NExT-QA基准测试中超越现有最佳方法。VideoAgent借鉴人类观看视频的方式,迭代选择关键帧进行信息提取和推理,为长视频理解设定新标准。论文链接:[arxiv.org/pdf/2403.10517.pdf](https://arxiv.org/pdf/2403.10517.pdf)
223 1
斯坦福新研究提升大模型长视频理解能力
|
机器学习/深度学习 自然语言处理 自动驾驶
南洋理工大学最新视觉语言模型综述:预训练、迁移学习和知识蒸馏啥都有
南洋理工大学最新视觉语言模型综述:预训练、迁移学习和知识蒸馏啥都有
|
机器学习/深度学习 人工智能 算法
Nature子刊:大脑学习也靠反向传播?Hinton等用新一代反向传播算法模拟神经网络
反向传播作为一种基本负反馈机制,极大地推动了深度学习神经网络的发展。那么,反向传播也存在于人脑的运行方式中吗?反向传播的发明者Geoffery Hinton发Nature子刊告诉我们:人脑中存在类似于反向传播的神经机制,我用一种新算法类比出来了!
730 0
Nature子刊:大脑学习也靠反向传播?Hinton等用新一代反向传播算法模拟神经网络
|
机器学习/深度学习 数据挖掘 PyTorch
ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE
ICLR 2023 | 解决VAE表示学习问题,北海道大学提出新型生成模型GWAE
100 0
|
机器学习/深度学习 Web App开发 人工智能
DenseNet共一、CVPR 2017最佳论文得主刘壮博士论文,从另一视角看神经网络架构
DenseNet共一、CVPR 2017最佳论文得主刘壮博士论文,从另一视角看神经网络架构
243 0
|
机器学习/深度学习 人工智能 自然语言处理
稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习|ICLR 2023
稀疏模型最新进展!马毅+LeCun强强联手:「白盒」非监督式学习|ICLR 2023
372 0
|
机器学习/深度学习 数据采集 人工智能
从BERT到ChatGPT,北航等9大顶尖研究机构全面综述:那些年一起追过的「预训练基础模型」
从BERT到ChatGPT,北航等9大顶尖研究机构全面综述:那些年一起追过的「预训练基础模型」
197 0
|
机器学习/深度学习 算法 vr&ar
南大最新综述论文:基于模型的强化学习
南大最新综述论文:基于模型的强化学习
190 0
|
机器学习/深度学习 算法 C++
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习
深度学习和人工神经网络已经从大脑获得灵感,但大部分是在计算表现形式上的灵感(大多是生物学的,比如 spike 的存在留待考虑)。然而,如今缺少的是对生物神经元中存在的学习规则的一个可信的机器学习说明,从而能够解释一个深度神经网络有效的联合训练,也就是通过一个神经连接长链说明信任分配(credit assignment)。因此,解决信任分配难题也意味着确认神经元与权重,这二者与得到想要的输出和改变参数有关。反向传播提供了一个机器学习答案,然而就像下一段讨论的那样,它并非生物学上可信的。寻找一个生物学上可信的机器学习方法进行深度网络中的信任分配是一个主要的长期问题,也是此论文贡献的方向。
学界 | Yoshua Bengio最新修改版论文:迈向生物学上可信的深度学习