KAN干翻MLP,开创神经网络新范式!一个数十年前数学定理,竟被MIT华人学者复活了

简介: 【10月更文挑战第12天】MIT华人学者提出了一种基于Kolmogorov-Arnold表示定理的新型神经网络——KAN。与传统MLP不同,KAN将可学习的激活函数放在权重上,使其在表达能力、准确性、可解释性和收敛速度方面表现出显著优势,尤其在处理高维数据时效果更佳。然而,KAN的复杂性也可能带来部署和维护的挑战。论文地址:https://arxiv.org/pdf/2404.19756

在深度学习领域,多层感知机(MLP)一直占据着重要地位。然而,最近来自MIT的华人学者提出了一种名为Kolmogorov-Arnold网络(KAN)的新型神经网络,它可能正在改变这一格局。

KAN的提出源于Kolmogorov-Arnold表示定理,这是一个在20世纪50年代由苏联数学家提出的数学定理。该定理指出,任何连续的多变量函数都可以通过有限次的单变量函数和加法操作来表达。这一定理在数学界有着重要的地位,但一直以来,它并没有在机器学习领域得到广泛的应用。

与MLP不同,KAN将可学习的激活函数放在了边上(即权重上),而不是节点上(即神经元上)。这意味着KAN没有线性权重,而是将每个权重参数替换为一个由样条函数参数化的单变量函数。这种设计使得KAN在表达能力上更加强大,同时也更加易于解释。

KAN相比于MLP具有以下几个优势:

  1. 更高的准确性:KAN在数据拟合和PDE求解等任务上表现出了更高的准确性。特别是在高维数据上,KAN能够实现比MLP更好的性能。
  2. 更好的可解释性:KAN的激活函数是可学习的,这使得它们更加易于解释。研究人员可以通过可视化这些激活函数来更好地理解模型的决策过程。
  3. 更快的收敛速度:KAN在训练过程中表现出了更快的收敛速度,这可能是因为它们的激活函数更加灵活,能够更好地适应数据的变化。

KAN的提出为机器学习领域带来了新的思路和方法。它们在准确性、可解释性和收敛速度等方面的优势使得它们在许多实际应用中具有很大的潜力。例如,KAN可以用于科学发现、工程设计等领域,帮助研究人员更好地理解和利用复杂的数据。

尽管KAN具有许多优势,但它们也面临着一些批评和挑战。一些研究人员认为,KAN的复杂性可能会导致它们在实际应用中难以部署和维护。此外,KAN的激活函数是可学习的,这可能会导致模型的可解释性受到限制。

论文地址:https://arxiv.org/pdf/2404.19756

目录
相关文章
|
2月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
|
3月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
344 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
4月前
|
机器学习/深度学习 存储 大数据
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
96 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
5月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
1213 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
4月前
|
机器学习/深度学习 存储 大数据
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
155 0
YOLOv11改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
|
6月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
397 3
图卷积网络入门:数学基础与架构设计
|
机器学习/深度学习 存储 算法
卷积神经网络(CNN)的数学原理解析
卷积神经网络(CNN)的数学原理解析
321 1
卷积神经网络(CNN)的数学原理解析
|
11月前
|
算法 安全 网络安全
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
|
运维 安全 网络安全
云端防御策略:融合云服务的网络安全新范式
【5月更文挑战第15天】 随着企业逐渐将关键业务迁移至云平台,云计算服务的安全性成为维护信息安全的前沿阵地。本文深入探讨了云服务模型中的网络安全挑战与对策,分析了在公有云、私有云和混合云环境下,如何通过创新的安全架构和技术手段强化数据保护和威胁防御。文章着重讨论了多租户环境中的数据隔离问题、云安全访问控制的最新进展以及针对云环境的安全运维管理实践。通过综合分析,提出了一个多层次、动态适应的安全框架,旨在为云服务用户提供一个更加安全、可靠的计算环境。
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
159 17

热门文章

最新文章