【GUI】基于开关李雅普诺夫函数的非线性系统稳定(Matlab代码实现)

简介: 【GUI】基于开关李雅普诺夫函数的非线性系统稳定(Matlab代码实现)

💥1 概述

摘要:

如果李雅普诺夫函数已知,则可以稳定动态系统。然而,计算李雅普诺夫函数通常具有挑战性。本文采用了一种新的方法;它假设一个基本的类似李雅普诺夫的函数,然后试图在数值上减少李雅普诺夫值。如果控制工作在任何迭代中都没有效果,则切换类似李雅普诺夫的函数以尝试重新获得控制权。该方法在四个模拟系统上进行了测试,以对其有用性和局限性提供一些看法。高度耦合的三阶系统证明了该方法的一般适用性,最后考虑了机器人应用中3个电机的协调控制。


最初,Lyapunov理论被用于检验非线性系统的稳定性[1]。1983年,Artstein[2]开始使用Lyapunov理论进行控制器综合。他证明了Lyapunov函数存在当且仅当系统是可稳定的。


找到合适的李雅普诺夫函数可能很困难,但如果能找到,那么就可以用一个简单的公式计算出稳定控制的努力。除了Artstein的原始方法之外,当Lyapunov函数已知时,还有其他几种方法[3,4]来计算稳定控制努力。


许多研究者提出了寻找Lyapunov函数的创造性方法,包括[3-6]。然而,这些李亚普诺夫函数*处理了操作系统仅适用于本地,或者它们仅限于系统的一个子集。


一般来说,如何找到Lyapunov函数的问题仍然没有解决[4]。


Peleties[7]开创了分段动态系统的多个“Lyapunov”函数的概念,当整个感兴趣区域的单个Lyapunov函数未知或会导致过度保守的控制策略时,这是有用的。2013年,Sassano[8]提出了时变Lyapunov函数的概念。他的技术可以生成一个李雅普诺夫函数,而不需要解李雅普诺夫偏微分不等式,尽管它需要解另一个偏微分方程。所提出的方法在概念上类似于[7,8],因为它涉及一个动态的李雅普诺夫函数。它涉及到在默认值失去控制时在两个详尽的lyapunov类函数之间切换。与[8]一样,本文提出的方法不需要明确了解Lyapunov函数。与[7]相比,所提出的方法的优点是它不局限于特定形式的系统。与[8]相比,优点是该技术是全局适用的,并且不需要解偏微分方程。


📚2 运行结果

部分代码:

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @launch_OpeningFcn, ...
                   'gui_OutputFcn',  @launch_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
addpath(genpath(pwd))
% --- Executes just before launch is made visible.
function launch_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to launch (see VARARGIN)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

相关文章
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
247 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
146 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
算法 5G vr&ar
基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真
在现代无线通信中,1-bit DAC的非线性预编码技术应用于MU-MIMO系统,旨在降低成本与能耗。本文采用MATLAB 2022a版本,深入探讨此技术,并通过算法运行效果图展示性能。核心代码支持中文注释与操作指导。理论部分包括信号量化、符号最大化准则,并对比ZF、WF、MRT及ADMM等算法,揭示了在1-bit量化条件下如何优化预编码以提升系统性能。
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
116 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
5月前
【光波电子学】MATLAB绘制光纤中线性偏振模式LP之单模光纤的电场分布(光斑)
该文章介绍了如何使用MATLAB绘制单模光纤中线性偏振模式LP₀₁的电场分布,并提供了相关的数学公式和参数用于模拟光纤中的光斑分布。
60 0
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章