anaconda迁移深度学习虚拟环境 and 在云服务器上配置(上)

简介: anaconda迁移深度学习虚拟环境 and 在云服务器上配置

1 anaconda 虚拟环境操作


1、 查看虚拟环境

conda info -e

2、 创建新的虚拟环境

conda create -n deeplearning_all pip python=3.6

3、 激活新建的虚拟环境

Conda activate  deeplearning_all


2 环境中相关库的版本即安装说明(这些库都是对应匹配的)


pip install numpy==1.16.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy==1.4.1  #这个可以不装sklearn会帮忙装
pip install pandas==0.21.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install patsy==0.5.1
pip install scikit-learn==0.23.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install imbalanced_learn==0.5.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install statsmodels==0.11.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
# CUDA 10.1
pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install --no-cache-dir tensorflow-gpu==2.3.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install absl-py==1.3.0
pip install keras==2.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib==3.3.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install xgboost==0.90 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install lightgbm==3.1.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install bayesian-optimization==0.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple


之后如果缺什么直接pip

ps:查看tensorflow/torch是否可以调动gpu


/

import tensorflow as tf
tf.config.list_physical_devices('GPU')
import torch # 如果pytorch安装成功即可导入
print(torch.cuda.is_available()) # 查看CUDA是否可用
print(torch.cuda.device_count()) # 查看可用的CUDA数量
print(torch.version.cuda) # 查看CUDA的版本号

3 Anaconda 环境克隆、迁移


目标主机(windows系统 anaconda版本最好一致):

在目标主机上安装anaconda安装包下载


3.1 查看conda环境:


conda info --envs


3.2 克隆base环境


如果想迁移的是base环境,因此需要先克隆(base环境不能直打包)

conda create -n 新环境的名称 --clone 老环境名称


3.3 安装conda-forge和conda-pack工具


conda install -c conda-forge conda-pack


3.4 将环境打包


文件会默认打包在C盘:/用户/用户名的文件夹中

conda pack -n 新环境名称 -o 新环境名称.tar.gz


3.5 将压缩包放到目标主机的同版本Anaconda路径下的envs文件夹内


解压至envs下新环境的文件夹下:

tar -zxvf 文件名 -C 文件夹名


3.6 激活环境

conda activate 新环境


环境已经成功迁移到目标主机并且可以使用了


4 使用 Windows GPU 云服务器搭建深度学习环境

4.1 选择驱动及相关库、软件版本


在安装驱动前,您需大致了解 CUDA、cuDNN、Pytorch、TensorFlow 及 Python 版本对应关系,以便根据实际配置选择适配版本,免除后续出现版本不匹配等问题。

选择 CUDA 驱动版本

CUDA(Compute Unified Device Architecture),是显卡厂商 NVIDIA 推出的运算平台。CUDA™ 是一种由 NVIDIA 推出的通用并行计算架构,该架构使 GPU 能够解决复杂的计算问题。其包含了 CUDA 指令集架构(ISA)以及 GPU 内部的并行计算引擎。

1、查看显卡算力

在选择 CUDA 驱动版本时,需先了解本文使用(Tesla P40)显卡的算力。可通过NVIDIA 官网 查询 Tesla P40 显卡算力为6.1。如下图所示:

(目标主机是T4)


2、选择 CUDA 版本

如下图所示 CUDA 版本与显卡算力的关系,Tesla P40 显卡应选择8.0以上的 CUDA 版本。如需了解更多算力与 CUDA 版本信息。


选择显卡驱动版本

确定 CUDA 版本后,再选择显卡驱动版本。您可参考如下图所示 CUDA 与驱动对应关系图进行选择。

选择 cuDNN 版本

NVIDIA cuDNN 是用于深度神经网络的 GPU 加速库。其强调性能、易用性和低内存开销。NVIDIA cuDNN 可以集成到更高级别的机器学习框架中,例如谷歌的 Tensorflow、加州大学伯克利分校的流行 caffe 软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在 GPU 上实现高性能现代并行计算。

cuDNN 是基于 CUDA 的深度学习 GPU 加速库,有它才能在 GPU 上完成深度学习的计算。如需在 CUDA 上运行深度神经网络,需安装 cuDNN,才能使 GPU 进行深度神经网络的工作,工作速度相较 CPU 快很多。cuDNN 版本与 CUDA 版本的对应关系请参见  cuDNN Archive


选择 Pytorch 版本

您需根据 CUDA 版本,选择对应的 Pytorch 版本,匹配版本信息请参见previous-versions


选择 TesorFIow 版本

Tensorflow 较 Pytorch 稍复杂,它还需要 Python、编译器的版本支持。CPU、GPU 版本与 Python、CUDA、cuDNN 的版本对应关系如下:

基于 CPU 版本的 TensorFlow 版本

基于 GPU 版本的 TensorFlow 版本


这里选择最优的版本:CUDA 10.1、Python 3.6、Pytorch 1.8.1、Tensorflow_gpu_2.3.0

相关实践学习
通义万相文本绘图与人像美化
本解决方案展示了如何利用自研的通义万相AIGC技术在Web服务中实现先进的图像生成。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5月前
|
机器学习/深度学习 人工智能 运维
“服务器又挂了!”——我们能不能靠深度学习,提前知道它要出事?
“服务器又挂了!”——我们能不能靠深度学习,提前知道它要出事?
116 2
|
4月前
|
网络协议 关系型数据库 应用服务中间件
如何迁移网站数据到新的服务器
迁移网站数据到新服务器是一个系统化的过程,需谨慎操作以避免数据丢失或服务中断。小编为您整理发布如何迁移网站数据到新的服务器,以下是详细步骤和注意事项。
|
3月前
|
人工智能 缓存 监控
构建高效MCP客户端:应对多服务器环境的完整指南
本文深入探讨了在多服务器环境下构建高效、可靠的Model Context Protocol(MCP)客户端的关键技术与最佳实践。内容涵盖MCP基础架构、连接管理、请求路由、容错机制、会话管理、性能监控及安全认证等核心设计,提供了完整的实现类与部署配置示例,助力开发者构建高性能MCP客户端,提升AI模型与工具集成的效率与稳定性。
|
4月前
|
弹性计算 关系型数据库 Nacos
低配阿里云 ECS 如何 docker 环境部署 NACOS : 单机版模式
NACOS 单机版 Docker 安装指南。使用指定端口和 custom.env 配置文件启动 Nacos 服务,适用于 2.X 版本,包含 gRPC 支持及 MySQL 数据源配置。 -e MODE=standalone \
405 5
|
5月前
|
弹性计算 安全
阿里云服务器镜像,快速迁移项目数据
有时候旧服务器快到期了,想把项目、数据、软件挪到新服务器上,如果全部重新搭建的话,那无疑是耗时又费力。有了镜像迁移,就方便了许多。
493 1
|
4月前
|
安全 关系型数据库 网络安全
安全加固:启动PostgreSQL 14服务器SSL加密的方法指南在CentOS 7环境中
通过上述步骤,你可以为PostgreSQL数据库服务器设置SSL加密,从而增加数据在传输中的安全性。确保维持证书的有效性,并且定期更新和管理密钥,以防止未授权访问。
231 0
|
6月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
448 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
7月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
351 28
|
5月前
|
机器学习/深度学习 运维 监控
服务器会“生病”?聊聊深度学习咋当系统“老中医”
服务器会“生病”?聊聊深度学习咋当系统“老中医”
152 0

热门文章

最新文章

下一篇
oss云网关配置