模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)

简介: 模拟Stevens & Lewis描述的小型飞机纵向动力学的非线性动态反演控制器研究(Matlab代码实现)

💥1 概述

针对Stevens和Lewis描述的小型飞机纵向动力学的非线性动态,研究非线性动态反演控制器可以是一个有趣的课题。动态反演控制器的目标是通过了解系统的动力学方程和状态信息,从而在实时中实现对系统的反演和控制。


下面是研究步骤:


1. 系统建模:首先,你需要建立小型飞机的纵向动力学模型。这可能包括纵向运动方程、气动力模型以及控制效应模型等。这些方程需要考虑飞行器的质量、惯性、空气动力学特性等因素。你可以参考Stevens和Lewis的工作以及其他相关文献,以获取合适的模型。


2. 系统特性分析:在完成系统建模后,你可以进行系统特性分析。使用非线性系统理论,分析系统的稳定性、可控性和可观测性等特性。这些分析将有助于理解系统行为和设计控制器。


3. 动态反演控制器设计:基于系统的动力学方程和特性分析结果,设计动态反演控制器。动态反演控制器的目标是通过在线估计系统未知参数和外部扰动,实时计算出对应的控制指令。这种控制器的优势在于对系统参数变化和未建模动态的鲁棒性。


4. 仿真与验证:实施动态反演控制器,并使用仿真工具模拟小型飞机的纵向运动。通过输入一组初始条件和控制指令,在仿真环境中进行验证和评估控制器的性能。可以使用 MATLAB、Simulink 或其他仿真软件来进行此步骤。


5. 实际实验:如果仿真结果令人满意,可以考虑在实际小型飞机上实施该控制器,并进行飞行试验。在实验中收集数据,并与仿真结果进行比较和分析,以验证控制器的有效性。


需要注意的是,小型飞机的纵向动力学是一个复杂的问题,需要掌握相关的飞行器动力学和控制理论知识。同时,确保你对动态反演控制器的基本原理和设计方法有充分的了解。


📚2 运行结果

部分代码:

%% COMMAND INPUT
r=1;        % Reference C* demand
rdot=0;     % Reference rate
% Outputs
nz=(LIFT*cos(ALPHA)+DRAG*sin(ALPHA))/(G*MASS)-cos(THETA); % Normal acceleration [eq (2)]
nzp=nz+15*MOM/(G*IYY);  % Normal acceleration at pilot's station [eq (3)]
cstar=nzp+12.4*Q;       % Controlled C* variable [eq(4)]
y=cstar;                % Output y=h(x)
%% DYNAMIC INVERSION CONTROL INPUT
e=r-y;                          % error
Fctrl=dhdx*f;                   % F(x)
Gctrl=dhdx*g;                   % G(x)
K=10;                           % Linear control gain
uelev=(-Fctrl+rdot+K*e)/Gctrl;  % Control
%% Model State Equations
xdot=zeros(5,1);
xdot(1)=(FT*cos(ALPHA)-DRAG-WEIGHT*sin(GAMMA))/MASS;        % Airspeed rate
xdot(2)=(-FT*sin(ALPHA)-LIFT+WEIGHT*cos(GAMMA))/(MASS*VT)+Q;% AoA rate
xdot(3)=Q;                          % Pitch rate
xdot(4)=MOM/IYY;                    % Pitch acceleration
xdot(5)=-20.2*EL+20.2*uelev;        % Elevator rate

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]B.L. Steven & F.L. Lewis (2003) “Aircraft Flight Control & Simulation”, John Wiley (edition 2)


🌈4 Matlab代码实现

相关文章
|
20天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
21天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
算法 5G vr&ar
基于1bitDAC的MU-MIMO的非线性预编码算法matlab性能仿真
在现代无线通信中,1-bit DAC的非线性预编码技术应用于MU-MIMO系统,旨在降低成本与能耗。本文采用MATLAB 2022a版本,深入探讨此技术,并通过算法运行效果图展示性能。核心代码支持中文注释与操作指导。理论部分包括信号量化、符号最大化准则,并对比ZF、WF、MRT及ADMM等算法,揭示了在1-bit量化条件下如何优化预编码以提升系统性能。
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
109 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的Kp、Ki、Kd参数,以输出误差为目标值,迭代求得最优参数。采用MATLAB 2022a验证,利用遗传算法全局寻优特性,自动完成参数整定,适合复杂及非线性系统,有效提升控制性能。
|
4月前
【光波电子学】MATLAB绘制光纤中线性偏振模式LP之单模光纤的电场分布(光斑)
该文章介绍了如何使用MATLAB绘制单模光纤中线性偏振模式LP₀₁的电场分布,并提供了相关的数学公式和参数用于模拟光纤中的光斑分布。
53 0
车辆行驶控制运动学模型的matlab建模与仿真,仿真输出车辆动态行驶过程
该课题在MATLAB2022a中建立了车辆行驶控制运动学模型并进行仿真,展示车辆动态行驶过程。系统仿真结果包含四张图像,显示了车辆在不同时间点的位置和轨迹。核心程序定义了车辆参数和初始条件,使用ode45求解器模拟车辆运动。车辆运动学模型基于几何学,研究车辆空间位姿、速度随时间变化,假设车辆在平面运动且轮胎无滑动。运动学方程描述位置、速度和加速度关系,模型预测控制用于优化轨迹跟踪,考虑道路曲率影响,提升弯道跟踪性能。
|
6月前
|
算法
基于PSO粒子群优化的PID控制器参数整定算法matlab仿真
该文探讨了使用PSO(粒子群优化)算法优化PID控制器参数的方法。通过PSO迭代,不断调整PID控制器的Kp、Ki、Kd增益,以减小控制误差。文中提供了MATLAB2022a版本的核心代码,展示了参数优化过程及结果。系统仿真图像显示了参数随迭代优化的变化。PID控制器结合PSO算法能有效提升控制性能,适用于复杂系统的参数整定,未来研究可关注算法效率提升和应对不确定性。