非线性优化 | 非线性问题matlab+yalmip求解案例

简介: 非线性优化 | 非线性问题matlab+yalmip求解案例


在数学规划问题中,常常会遇到多种非线性目标和约束的问题,如电力系统中机组的成本函数,很多文献采用分段线性化进行处理,但是对于稍微复杂些的非线性问题采用分段线性化难度很大,而且结果偏差比较严重,经过博主测试,matlab+yalmip(cplex为求解器)能够解决一些看起来比较棘手的非线性问题,功能远比你想象中要强大。

1 非线性数学规划案例

考虑下面的最小化问题。

其中,.

可以看到,目标函数是一个带的函数,是非线性的;第一个约束是2次方,第二个约束带绝对值。

这个问题包含了多种非线性的场景,非常适合用来检验matlab+yalmip求解非线性的数学规划。

2 完全直接调用matlab+yalmip求解

如果完全直接调用yalmip求解,则需要引入辅助变量

因此,上述数学规划其实是可以等价为下面的形式

我们用matlab调用cplex来求解该数学规划。

使用到的函数

  • abs: 添加绝对值约束
  • max:添加约束

完整代码如下:

%定义变量
x=sdpvar(1);
y=sdpvar(1);
z=sdpvar(1);
u=sdpvar(1);
w=sdpvar(1);
%设置约束
con=[];
con=[con,(x-1)^2+(y-1)^2-1<=0];%二次非线性约束
con=[con,z+y-2<=0];
con=[con,z==abs(x)];%非线性约束
con=[con,u==y+4];
con=[con,w==max(z,u)];%非线性约束
con=[con,w>=0,z>=0];
%求解
ops = sdpsettings('verbose',1,'solver','cplex');%求解器设置
optimize(con,w,ops)
%结果
x=value(x)
y=value(y)
z=value(z)
u=value(u)
w=value(w)

求解结果为:

CPXPARAM_MIP_Display                             1
Tried aggregator 2 times.
MIQCP Presolve eliminated 5 rows and 1 columns.
MIQCP Presolve modified 16 coefficients.
Aggregator did 5 substitutions.
Reduced MIQCP has 15 rows, 8 columns, and 40 nonzeros.
Reduced MIQCP has 2 binaries, 0 generals, 0 SOSs, and 0 indicators.
Reduced MIQCP has 1 quadratic constraints.
Presolve time = 0.00 sec. (0.05 ticks)
Probing time = 0.00 sec. (0.00 ticks)
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 8 threads.
Node log . . .
Best integer =   4.999999e+00  Node =       0  Best node =   3.998578e+00
Best integer =   4.999997e+00  Node =       0  Best node =   3.999001e+00
Best integer =   4.000000e+00  Node =       0  Best node =   4.000000e+00
Flow cuts applied:  1
Gomory fractional cuts applied:  1
Cone linearizations applied:  13
ans = 
  包含以下字段的 struct:
    yalmipversion: '20181012'
       yalmiptime: 0.1245
       solvertime: 0.3555
             info: 'Successfully solved (CPLEX-IBM)'
          problem: 0
x =    1.0000
y =  -6.9885e-09
z =    1.0000
u =    4.0000
w =    4.0000

由于是有一点点数值问题,我们可以忽略数值问题,实际上最优解为

从上述解可以得知,这个解确实是最优的。

通过报告我们大致看一下对非线性部分如何处理的:

Reduced MIQCP has 1 quadratic constraints

该二次型整数规划模型中成功处理了二次项约束,具体处理方法也直接给出来了:

Cone linearizations applied:  13

应用了二阶锥方法解决2次规划问题,当然,二阶锥约束也可以用cone进行表达。

这里是matlab/yalmip深度应用聚集地,欢迎关注。

相关文章
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
4天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
4天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
16天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
8天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
2月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
2月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章