【图像分割和识别】活动形状模型 (ASM) 和活动外观模型 (AAM)(Matlab代码实现)

简介: 【图像分割和识别】活动形状模型 (ASM) 和活动外观模型 (AAM)(Matlab代码实现)

💥1 概述

提出了一种主动形状模型分割方案,该方案由最优局部特征引导,与原始公式中的归一阶导数轮廓相反[Cootes and Taylor, 1995, 1999, and 2001]。使用非线性 kNN 分类器代替线性马氏距离来查找地标的最佳位移。对于描述形状的每个地标,在分割优化过程中考虑的每个分辨率级别上,将确定一组不同的最佳特征。特征的选择是自动的,使用训练图像和顺序特征向前和向后选择。新方法在合成数据和四个医学分割任务中进行了测试:在包含230张胸片的数据库中分割左右肺野,并在MRI脑图像的90个切片数据库中分割小脑和胼胝体。在所有情况下,新方法在重叠误差测量(使用配对 T 检验时为 p<0.001)方面产生的结果明显优于原始活动形状模型方案。


这是Cootes和Taylor引入的基本活动形状模型(ASM)和活动外观模型(AAM)的一个例子,具有多分辨率方法,彩色图像支持和改进的边缘查找方法的2D和3D。对于生物医学对象的自动分割和识别非常有用。

.


基本思想 ASM:

ASM 模型是根据训练图像中手动绘制的轮廓(3D 表面)训练的。ASM 模型使用主成分分析 (PCA) 查找训练数据中的主要变化,这使模型能够自动识别轮廓是否为可能/良好的对象轮廓。此外,ASM模式还包含描述垂直于控制点的线纹理的矩阵,这些矩阵用于校正搜索步骤中的位置。


创建 ASM 模型后,通过查找控制点的最佳纹理匹配来变形初始轮廓。这是一个迭代过程,其中控制点的移动受到 ASM 模型从训练数据中识别为“正常”对象轮廓的限制。

.


基本思想AAM:

PCA用于查找训练数据的平均形状和平均形状的主要变化。找到形状模型后,所有训练数据对象都变形为主形状,并将像素转换为矢量。然后使用 PCA 来查找训练集中的平均外观(强度)和外观方差。

形状和外观模型都与 PCA 合并为一个 AAM 模型。

通过用已知量替换训练集中的参数,可以创建一个模型,该模型针对模型强度和正常图像强度的一定差异提供最佳参数更新。此模型用于搜索阶段。


参考文献:


- Ginneken B. et al. “Active Shape Model Segmentation with Optimal Features”, IEEE Transactions on Medical Imaging 2002.

- T.F. Cootes, G.J Edwards, and C,J. Taylor“Active Appearance Models”, Proc. European Conference on Computer Vision 1998

- T.F. Cootes, G.J Edwards, and C,J. Taylor “Active Appearance Models”, IEEE Transactions on Pattern Analysis and Machine Intelligence 2001


📚2 运行结果

部分代码:

%Add functions path to matlab search path
functionname='AAM_2D_example.m'; functiondir=which(functionname);
functiondir=functiondir(1:end-length(functionname));
addpath([functiondir 'AAM Functions'])
addpath([functiondir 'Functions'])
addpath([functiondir 'PieceWiseLinearWarp_version2'])
addpath([functiondir 'PieceWiseLinearWarp_version2/functions'])
% Try to compile c-files
cd([functiondir 'PieceWiseLinearWarp_version2/functions'])
try
    mex('warp_triangle_double.c','image_interpolation.c');
catch ME
    disp('compile c-files failed: example will be slow');
end
cd(functiondir);
%% Set options
% Number of contour points interpolated between the major landmarks.
options.ni=20;
% Set normal appearance/contour, limit to +- m*sqrt( eigenvalue )
options.m=3;
% Size of appearance texture as amount of orignal image
options.texturesize=1;
% If verbose is true all debug images will be shown.
options.verbose=true;
% Number of image scales
options.nscales=4;
% Number of search itterations
options.nsearch=15;
%% Load training data
% First Load the Hand Training DataSets (Contour and Image)
% The LoadDataSetNiceContour, not only reads the contour points, but
% also resamples them to get a nice uniform spacing, between the important
% landmark contour points.
TrainingData=struct;
for i=1:10
    is=num2str(i); number = '000'; number(end-length(is)+1:end)=is;
    filename=['Fotos/train' number '.mat'];
    [TrainingData(i).Vertices, TrainingData(i).Lines]=LoadDataSetNiceContour(filename,options.ni,options.verbose);
    filename=['Fotos/train' number '.jpg'];
    I=im2double(imread(filename));
    if(options.verbose)
        Vertices=TrainingData(i).Vertices;
        Lines=TrainingData(i).Lines;
        t=mod(i-1,4); if(t==0), figure; end
        subplot(2,2,t+1), imshow(I); hold on;
        P1=Vertices(Lines(:,1),:); P2=Vertices(Lines(:,2),:);
        plot([P1(:,2) P2(:,2)]',[P1(:,1) P2(:,1)]','b');
        drawnow;
    end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

- Ginneken B. et al. “Active Shape Model Segmentation with Optimal Features”, IEEE Transactions on Medical Imaging 2002.

- T.F. Cootes, G.J Edwards, and C,J. Taylor“Active Appearance Models”, Proc. European Conference on Computer Vision 1998

- T.F. Cootes, G.J Edwards, and C,J. Taylor “Active Appearance Models”, IEEE Transactions on Pattern Analysis and Machine Intelligence 2001


🌈4 Matlab代码实现

相关文章
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
14天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
21天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
2月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
3月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
8月前
|
Oracle 关系型数据库
oracle asm 磁盘显示offline
oracle asm 磁盘显示offline
360 2
|
3月前
|
存储 Oracle 关系型数据库
数据库数据恢复—Oracle ASM磁盘组故障数据恢复案例
Oracle数据库数据恢复环境&故障: Oracle ASM磁盘组由4块磁盘组成。Oracle ASM磁盘组掉线 ,ASM实例不能mount。 Oracle数据库故障分析&恢复方案: 数据库数据恢复工程师对组成ASM磁盘组的磁盘进行分析。对ASM元数据进行分析发现ASM存储元数据损坏,导致磁盘组无法挂载。
|
8月前
|
存储 Oracle 关系型数据库
【数据库数据恢复】Oracle数据库ASM磁盘组掉线的数据恢复案例
oracle数据库ASM磁盘组掉线,ASM实例不能挂载。数据库管理员尝试修复数据库,但是没有成功。
【数据库数据恢复】Oracle数据库ASM磁盘组掉线的数据恢复案例
|
SQL Oracle 关系型数据库
Oracle ASM磁盘和磁盘组的常用SQL语句
Oracle ASM磁盘和磁盘组的常用SQL语句
290 0

热门文章

最新文章