【不确定非线性动力系统的优化算法】【动态集成系统优化与参数估计(DISOPE)技术】DISOPE + MOMENTUM + PARTAN 算法提高非线性动态系统的收敛性研究(Matlab代码实现)

简介: 【不确定非线性动力系统的优化算法】【动态集成系统优化与参数估计(DISOPE)技术】DISOPE + MOMENTUM + PARTAN 算法提高非线性动态系统的收敛性研究(Matlab代码实现)

💥1 概述

【不确定非线性动力系统的优化算法】【动态集成系统优化与参数估计(DISOPE)技术】DISOPE + MOMENTUM + PARTAN 算法提高非线性动态系统的收敛性研究研究涵盖化学加工工业、机器人、基因组学等应用。


动态集成系统优化与参数估计(DISOPE)技术是一种用于优化非线性动力系统的方法。它结合了动态集成系统、动量算法(Momentum)和基于神经网络的参数估计算法(PARTAN),旨在提高系统的收敛性和优化效果。


DISOPE技术的核心思想是通过动态集成系统对非线性动力系统的行为进行建模和预测,进而优化系统的参数和控制策略。该技术的基本步骤如下:


1. 动态集成系统建模:使用动态集成系统方法,建立非线性动力系统的模型。动态集成系统通过融合多个模型的预测结果,提供更准确的系统行为估计。


2. 参数估计与优化:使用基于神经网络的参数估计算法(如PARTAN),对动态集成系统的模型参数进行估计和优化。这些参数可以包括系统的内部参数、外部参数以及控制策略的参数。


3. 动量算法优化:引入动量算法(Momentum),作为优化算法的一部分。动量算法可以加速参数更新过程,增强算法在参数空间搜索的效率,并提高参数收敛性。


4. 优化与收敛性研究:通过实验和仿真研究,评估DISOPE + MOMENTUM + PARTAN算法在非线性动力系统的优化中的收敛性和优化效果。可以对比其他优化算法的性能,验证该算法的有效性和适用性。


总之,DISOPE + MOMENTUM + PARTAN算法是一种将动态集成系统、动量算法和基于神经网络的参数估计算法结合起来的方法,用于提高非线性动态系统的收敛性和优化效果。该算法的研究可促进对非线性动力系统优化方法的发展和改进。


📚2 运行结果

部分代码:

function [ sys ] = fstar( x, u, option )
% This function must be created  by the user to define
% the dynamic system xdot = f*(x,u,t)
if  option == 'value' 
% return the value xdot from
% xdot = f*(x,u,t)
   sys = zeros(2,1);
   sys(1) = -(x(1)+0.25)+(x(2)+0.5)*exp(25*x(1)/(x(1)+2))-(1+u(1))*(x(1)+0.25);
   sys(2) = 0.5-x(2)-(x(2)+0.5)*exp(25*x(1)/(x(1)+2));
elseif  option == 'gradz' 
% return the jacobian matrix of f*(x,u,k) with respect to x 
     sys = zeros( 2,2 );
     h = [sqrt(eps); 0];
     sys(:,1) = (fstar(x+h,u,'value')-fstar(x-h,u,'value'))/(2*norm(h));
     h = [0; sqrt(eps)];
     sys(:,2) = (fstar(x+h,u,'value')-fstar(x-h,u,'value'))/(2*norm(h));
elseif  option == 'gradv' 
% return the jacobian matrix of f*(x,u,k) with respect to u
          h = sqrt(eps);
          sys = (fstar(x,u+h,'value')-fstar(x,u-h,'value'))/(2*h);         
elseif  option == 'xinit' 
% return the initial state conditons
          sys = [ 0.05; 0 ];
%          sys = [ 0.09; 0.09 ];
else sys = [];
end;
return;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]孔金生,万百五.非线性离散动态系统DISOPE方法及其收敛性分析[J].航空计算技术,2003(04):41-43.


[2]孔金生,万百五.基于算法参数、模型与模型参数优选的智能DISOPE方法[J].系统工程理论与实践,2000(10):10-16.


[3]李俊民,邢科义,万百五.基于线性时变模型的非线性动态系统最优控制DISOPE算法[J].应用数学,1999(01):94-99.


[4]孔金生,万百五.非线性离散动态大系统的DISOPE关联预测递阶算法[J].系统工程理论与实践,2000(12):77-83.


🌈4 Matlab代码实现

相关文章
|
1天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
摘要: 该文介绍了使用 MATLAB 2022a 进行时间序列预测的算法优化。优化前后对比显示效果改善明显。算法基于CNN、GRU和注意力机制的深度学习模型,其中GWO(灰狼优化)用于优化超参数。CNN提取时间序列的局部特征,GRU处理序列数据的长期依赖,注意力机制聚焦关键信息。GWO算法模拟灰狼行为以实现全局优化。提供的代码片段展示了网络训练和预测过程,以及预测值与真实值的比较。
|
3天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
19 4
|
7天前
|
存储 算法 搜索推荐
【大数据分析与挖掘技术】Mahout推荐算法
【大数据分析与挖掘技术】Mahout推荐算法
12 0
|
8天前
|
安全 Android开发 iOS开发
构建未来:安卓与iOS的无缝集成技术探索
【5月更文挑战第20天】随着智能设备的普及和技术的不断进步,安卓和iOS两大操作系统之间的界限正在逐渐模糊。本文将深入探讨如何通过最新的API、框架和工具实现安卓与iOS应用的无缝集成,以及这一趋势对开发者和用户的潜在影响。我们将从技术可行性、安全性挑战、用户体验优化等角度出发,分析当前的发展状况,并展望未来可能的技术融合路径。
|
11天前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
13天前
|
前端开发 Java 应用服务中间件
从零手写实现 tomcat-08-tomcat 如何与 springboot 集成?
该文是一系列关于从零开始手写实现 Apache Tomcat 的教程概述。作者希望通过亲自动手实践理解 Tomcat 的核心机制。文章讨论了 Spring Boot 如何实现直接通过 `main` 方法启动,Spring 与 Tomcat 容器的集成方式,以及两者生命周期的同步原理。文中还提出了实现 Tomcat 的启发,强调在设计启动流程时确保资源的正确加载和初始化。最后提到了一个名为 mini-cat(嗅虎)的简易 Tomcat 实现项目,开源于 [GitHub](https://github.com/houbb/minicat)。
|
13天前
|
消息中间件 Java Kafka
Springboot集成高低版本kafka
Springboot集成高低版本kafka
|
13天前
|
前端开发 Java 应用服务中间件
从零手写实现 tomcat-08-tomcat 如何与 springboot 集成?
本文探讨了Spring Boot如何实现像普通Java程序一样通过main方法启动,关键在于Spring Boot的自动配置、内嵌Servlet容器(如Tomcat)以及`SpringApplication`类。Spring与Tomcat集成有两种方式:独立模式和嵌入式模式,两者通过Servlet规范、Spring MVC协同工作。Spring和Tomcat的生命周期同步涉及启动、运行和关闭阶段,通过事件和监听器实现。文章鼓励读者从实现Tomcat中学习资源管理和生命周期管理。此外,推荐了Netty权威指南系列文章,并提到了一个名为mini-cat的简易Tomcat实现项目。
|
11天前
|
Java 数据库连接 数据安全/隐私保护
springBoot集成token认证,最全Java面试知识点梳理
springBoot集成token认证,最全Java面试知识点梳理
|
13天前
|
消息中间件 JSON Java
RabbitMQ的springboot项目集成使用-01
RabbitMQ的springboot项目集成使用-01