基于 K 均值聚类的径向基RBF神经网络优化(Matlab代码实现)

简介: 基于 K 均值聚类的径向基RBF神经网络优化(Matlab代码实现)

💥1 概述

1.1 RBF神经网络模型

RBF神经网络是一种常见的三层结构神经网络,主要包括输入层、隐含层及输出层,如图1所示。RBF神经网络的作用原理,是将径向基函数(RBF)作为网络第二层隐含层的节点函数,以此构成隐含层空间。当数据被输入网络后,输入层会把数据传递给隐含层。经过隐含层节点函数计算之后,再将数据传递给输出层。通常而言,隐含层节点的计算函数是非线性的。当隐含层的节点数增加时,处理数据的次数也随之增加,使RBF网络得到的结果也就更加精确。但是,过多的节点数会减低网络的执行效率。第三层输出层的节点函数通常是线性的,其作用通常是对隐含层函数计算所得结果进行加权处理,将数据处理成方便输出,容易读懂的形式。


在 RBF神经网络中,设输入层节点个数为Ⅰ,隐含层节点数为M,输出层节点数为N,输入量为x.当x经输入到模型后,会经过Ⅰ次传递。因此定义x为Ⅰ维输入量。设输出量为y,同理y会经过N次输出,称y为N维输出量。一般来说,采用高斯激活函数作为隐含层节点的作用函数,该函数在RBF网络隐含层第i个节点输出为:


1.2 K-均值聚类算法

K均值聚类算法是目前应用最为广泛的划分聚类算法。其算法具有原理简单、模型清晰、操作方便、计算快速等特点,可以大规模同时对多种类型的数据进行聚类,快速挖掘出数据中隐含的关系和结构。


K均值聚类算法是判断基于数据到中心点的距离来区分数据的所属类别。其把N个对象划分)成k个簇,用簇中对象的均值表示每个簇的中心点(质心),利用合适的距离计算公式,计算出数据与聚类中心的距离,将其划分到合适的聚类中。当所有数据聚类结束后,检查聚类中心是否已收敛,如果收敛则终止,否则将继续迭代。


📚2 运行结果

部分代码:

function [C]=K_Means(X,M,D)
%% Function for Finding K-Means in the X data
% X is the Data Matrix
% M is the Number of Means Required (K)
temp=randperm(size(X,1));   % Random Permutation of Random index to pick data point
C=X(temp(1:M),:);           % Initial Guess for Centers is the random data point
J=[];                       % Cost Function to be minimized
k=1;                        % Iteration number
while(1)
    J(k)=0; 
    S=zeros(M,size(X,2));   % Sum of values fall in K Centers
    indeX=[];               % Index of the closest Center to the test data point
    for i=1:size(X,1)
        temp=0;             % temporary Variable for storing distance to centers
        for j =1:M
        temp(j)=(norm((X(i,:)-C(j,:))).^2);
        end
        [tmp,ind]=min(temp);  % Finding the closest Center for ith data point
        indeX=[indeX ind];  % Index of the closest Center to the test data point
        S(ind,:)=S(ind,:)+X(i,:);   % Sum of values fall in K Centers
        J(k)=J(k)+sum(temp); % Cost Function
    end
    for j=1:M
            N(j)=length(find(indeX==j)); % Number of Values closest to jth Center
    end
    Ctemp=[];   % Temporary Values for Center that will be updated only if different
    for l=1:size(X,2)
    Ctemp=[Ctemp S(:,l)./N'];
    end
    %% Check for update and stoping condition
    % Temporary Values for Center that will be updated only if different
    if(sum(sum(~(C==Ctemp)))~=0)
        C=Ctemp;
    else
        break
    end 
    %% Optional Animated Graph for Data only work if number of argument to function > 2
    % START
    if (nargin>2)
    scatter(X(:,1),X(:,2))
    hold on
    scatter(C(:,1),C(:,2),'filled')
    hold off
    pause(0.25)
    end
    % END
k=k+1;
end
%% Optional Graph for Cost only work if number of argument to function > 2
% START
if (nargin>2)
figure,plot(J)
xlabel('Iterations');
ylabel('Cost');
title('Cost Function');
end
% END

🎉3 参考文献

[1]张天逸,孙毅然,刘凡琪,梁悦祺,林永杰,马明辉.基于K均值聚类算法与RBF神经网络的交通流预测方法[J].智能计算机与应用,2020,10(08):148-151.

🌈4 Matlab代码实现


相关文章
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
2天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
19天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
30天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。

热门文章

最新文章