Pandas中Series的属性、方法、常用操作以及使用示例(三)

简介: Pandas中Series的属性、方法、常用操作以及使用示例(三)

3.10 sort_values() ---- 根据元素值进行排序

  • ascending:True为升序(默认),False为降序

3.10.1 升序

l = [4, 2, 1, 3]
s = pd.Series(l)
print(s)
print()
s = s.sort_values()
print(s)

3.10.2 降序

l = [4, 2, 1, 3]
s = pd.Series(l)
print(s)
print()
s = s.sort_values(ascending=False)
print(s)

3.11 sort_index() ---- 根据索引值进行排序

  • ascending:True为升序(默认),False为降序

3.11.2 升序

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s = s.sort_index()
print(s)

3.11.2 降序

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s = s.sort_index(ascending=False)
print(s)

3.12 apply() ---- 根据传入的函数参数处理 Series 对象

  • 需要传入一个函数参数
# x 为当前遍历到的元素
def func(x):
  if (x%2==0): return x+1
  else: return x
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 调用 apply 方法,会将 Series 中的每个元素带入 func 函数中进行处理
s = s.apply(func)
print(s)

3.13 head() ---- 查看 Series 对象的前 x 个元素

  • 需要传入一个数 x ,表示查看前 x 个元素,默认为前5个
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# head(x) 查看 Series 对象的前 x 个元素
print(s.head(2))

3.14 tail() ---- 查看 Series 对象的后 x 个元素

  • 需要传入一个数 x ,表示查看后 x 个元素,默认为后5个
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# tail(x) 查看 Series 对象的后 x 个元素
print(s.tail(2))

4. Series 的常用操作

4.1 Series 对象的数据访问

4.1.1 使用数字索引进行访问

4.1.1.1 未自定义索引
l = [12, 23, 24, 34]
s = pd.Series(l)
print(s)
print()
print(s[0])
print()
print(s[1:-2])
print()
print(s[::2])
print()
print(s[::-1])

4.1.1.2 自定义索引
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s[0])
print()
print(s[1:-2])
print()
print(s[::2])
print()
print(s[::-1])

4.1.2 使用自定义标签索引进行访问

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
print(s['zs'])
print()
# 自定义标签索引进行切片包含开始与结束位置
print(s['ls':'zl'])
print()
print(s['zs':'zl':2])
print()
# 注意切边范围的方向与步长的方向
print(s['zl':'zs':-1])

4.1.3 使用索引掩码进行访问

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
idx = (s%2==0)
print(idx)
print()
# 索引掩码(也是一个数组)
# 索引掩码个数与原数组的个数一致,数组每个元素都与索引掩码中的元素一一对应
# 数组每个元素都对应着索引掩码中的一个True或False
# 只有索引掩码中为True所对应元素组中的元素才会被选中
print(s[idx])

4.1.4 一次性访问多个元素

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 选出指定索引对应的元素
print(s[['zs', 'ww']])
print()
print(s[[1, 2]])

4.2 Series 对象数据元素的删除

4.2.1 pop()

  • 传入要删除元素的标签索引
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s.pop('ww')
print(s)

4.2.2 drop()

  • 传入要删除元素的标签索引
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# drop() 会返回一个删除元素后的新数组,不会对原数组进行修改
s = s.drop('zs')
print(s)

4.3 Series 对象数据元素的修改

4.3.1 通过标签索引进行修改

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s['zs'] = 22
print(s)

4.3.2 通过数字索引进行修改

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s[1] = 22
print(s)

4.4 Series 对象数据元素的添加

4.4.1 通过标签索引添加

l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
s['ll'] = 22
print(s)

4.4.2 append()

  • 需要传入一个要添加到原 Series 对象的 Series 对象
l = [12, 23, 24, 34]
s = pd.Series(l, index=['zs', 'ls', 'ww', 'zl'])
print(s)
print()
# 可以添加已经存在的索引及其值
s2 = pd.Series([11, 13], index=['zs', 'wd'])
# append() 不会对原数组进行修改
s = s.append(s2)
print(s)
print()
print(s['zs'])


相关文章
|
2月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
159 0
|
7天前
|
索引 Python
Pandas 数据结构 - Series
10月更文挑战第26天
17 2
Pandas 数据结构 - Series
|
8天前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,"死叉"指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而"金叉"则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
22 2
|
29天前
|
存储 数据采集 数据处理
Pandas中批量转换object至float的高效方法
在数据分析中,常需将Pandas DataFrame中的object类型列转换为float类型以进行数值计算。本文介绍如何使用`pd.to_numeric`函数高效转换,并处理非数字值,包括用0或平均值填充NaN值的方法。
32 1
|
2月前
|
数据处理 Python
Pandas中的drop_duplicates()方法详解
Pandas中的drop_duplicates()方法详解
141 2
|
2月前
|
数据处理 Python
Pandas快速统计重复值的2种方法
Pandas快速统计重复值的2种方法
100 1
|
2月前
|
数据挖掘 Python
掌握Pandas中的相关性分析:corr()方法详解
掌握Pandas中的相关性分析:corr()方法详解
121 0
|
2月前
|
数据处理 索引 Python
Pandas中resample方法:轻松处理时间序列数据
Pandas中resample方法:轻松处理时间序列数据
56 0
|
2月前
|
SQL 数据采集 索引
聚焦Pandas数据合并:掌握merge方法
聚焦Pandas数据合并:掌握merge方法
30 0
|
9天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
30 0
下一篇
无影云桌面