从NumPy到Pandas:轻松转换Python数值库与数据处理利器

简介: 从NumPy到Pandas:轻松转换Python数值库与数据处理利器

Python中有两大神器,分别是NumPy和Pandas。NumPy用于数值计算,而Pandas擅长数据处理。掌握如何将NumPy数组转换为Pandas数据框,将使你在数据处理和分析的道路上更加游刃有余。本文将介绍如何轻松地将NumPy数组转换为Pandas数据框,发挥它们各自的优势。一、NumPy与Pandas1. NumPy:NumPy(Numerical Python)是一个用于数值计算的 Python 库,它提供了向量、矩阵运算、线性代数、随机数生成等功能。在科学计算、工程和机器学习领域,NumPy 发挥着至关重要的作用。2. Pandas:Pandas 是 Python 另一个重要的库,它为数据处理和分析提供了强大的功能。Pandas 主要关注数据的结构化和操作,如数据框、series、合并、分组、筛选等。Pandas 在金融、统计、社会科学等领域具有广泛的应用。二、NumPy转换为Pandas将NumPy数组转换为Pandas数据框,可以让我们在数据处理和分析任务中更加灵活地运用NumPy提供的数值计算功能。以下是将NumPy数组转换为Pandas数据框的方法:1. 从NumPy数组创建Pandas数据框:

import numpy as npimport pandas as pd
# 创建一个 NumPy 数组numpy_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 将 NumPy 数组转换为 Pandas 数据框pandas_dataframe = pd.DataFrame(numpy_array)# 显示数据框print(pandas_dataframe)

输出以下数据框:

6c13e9f57d1b302088265b6ce5ce8892.png

2. 如果NumPy数组包含多列,可以使用columns参数指定列名:


numpy_array = np.array([[1, 2], [3, 4], [5, 6]])columns = ["Column 1", "Column 2"]# 将 NumPy 数组转换为 Pandas 数据框pandas_dataframe = pd.DataFrame(numpy_array, columns=columns)# 显示数据框print(pandas_dataframe)

输出以下数据框:

20c259a8a4225cd363e09d1edecbe373.png

三、小在实际应用中,可以根据需要将NumPy数组转换为Pandas数据框,以便在数据处理和分析任务中充分利用Pandas提供的功能。掌握了这一技能,你将在Python数据处理的道路上更加游刃有余。我们将继续为您带来更多有关Python数据科学和机器学习的实用技巧。敬请期待!

相关文章
|
4月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
452 1
|
4月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
278 0
|
5月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
1032 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
5月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
446 0
|
4月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
412 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
4月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
427 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
4月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
382 0
|
4月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
576 0
|
6月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
534 0
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
380 0

推荐镜像

更多