基于 LHS 、 BR 与K-means的风电出力场景分析研究(Matlab代码实现)

简介: 基于 LHS 、 BR 与K-means的风电出力场景分析研究(Matlab代码实现)

💥1 概述

文献来源:

风力发电具有无燃料成本、无污染等优点,是目前可再生能源研究和开发的重点之一。而受天然条件制约,风力的随机性和波动性是研究的难点。场景分析技术是表征风电出力的常见方法,包括场景生成与场景缩减两部分。场景生成根据研究对象的概率分布函数或统计特征,通过抽样来获得大量具有随机特征的场景。场景缩减通过数据分析减少相似场景的数量,降低计算复杂度。若能利用反映风速特征的场景生成方法准确生成大量场景,然后利用场景缩减方法,在保证精确性的同时减少相似场景的数量并得到相应的风电出力曲线,则将对电网规划设计、风电接纳能力评估、电源优化配置、储能规划及运行调度等具有重要意义。在场景生成的研究中,文献[4—5]利用蒙特卡


洛抽样法得到大规模风电场景集; 文献[6]采用反向传播( back propagation,BP) 神经网络对风电功率进行预测,进而生成风电出力的概率场景。此外,还有学者利用自回归滑动平均( auto-regressive and moving average,ARMA) 误差模型、非参数的概率预测等方法进行场景生成。场景生成的关键是保证生成的数据集能反映自身概率密度及总体特征。


在场景缩减的研究中,大多采用聚类分析法对相似场景进行缩减。文献[9]通过计算聚类有效性


指标,解决了传统 K-means 算法无法给出最佳聚类数的问题; 文献[10]针对待划分数据与聚类中心的距离等计算量大的部分,采用图形处理单元进行加速处理。此类方法对初始聚类中心要求高,且对离群点和噪声点敏感。另有研究人员使用 K-中心点聚类、分层聚类等方法进行场景缩减[11—12],此类方法步骤繁多,计算复杂,且分层聚类受奇异值的影响很大。


文中基于风速的不确定特性,建立基于拉丁超立方抽样( Latin hypercube sampling,


LHS) 与后向缩减法( backward reduction,BR) 的场景分析模型。


1.1 场景分析概述

在处理风电出力不确定性的研究中,广泛釆用 3 种方法: 模糊规划法、机会约束规划法以及场景分


析方法[11]。文中采用场景分析法处理风电出力不确定性问题,场景分析主要分为场景生成和场景缩减 2 部分。场景生成是指根据研究对象的概率分布函数或统计特征,通过抽样等方法获得具有不确定性特征的大规模场景,可用集合 S = { S1,S2,…,SN } 表示。场景缩减则通过对集合 S 进行数据分析,减少相似场景数目,获得期望的场景数,降低计算复杂度。最终剩下的少量经典场景集可用集合K = {K1,K2,…,KM } 表示,该集合能较大程度地表征原始场景随机变量特性。具体过程如图 2 所示。


1.2 基于 LHS 的场景生成算法

LHS 是一种分层抽样法,将一个大区间划分为若干个固定的小区间,每个小区间内只抽样 1 次。


假设对 N 维向量空间进行 M 次抽样,且对每一维进行的都是 0-1 均匀抽样,则可用 N%M 阶的矩阵 A 存储中间过程,用 N %M 阶的矩阵 B 存储样本点坐 标[17—19]。将 N 维向量空间中的每一维都等分成 M个区间,如图 3 所示。

1.3 基于 BR 的场景缩减算法

经 LHS 法得到的风速数据量庞大,各场景之间相似度很高。为更有效地将相近场景合并,文中基

于 BR 构建场景缩减模型[21—22],从而对大量数据进行处理。



📚2 运行结果


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]车兵,李轩,郑建勇等.基于LHS与BR的风电出力场景分析研究[J].电力工程技术,2020,39(06):213-219.

🌈4 Matlab代码、数据、文章讲解

相关文章
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
59 0
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
160 19
|
4月前
|
算法 Perl
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
本文介绍了基于MATLAB的多模光纤模场分布仿真分析,详细阐述了多模光纤的概念、实现方法、仿真技术,并利用模式耦合方程分析方法,通过理论和仿真模型设计,展示了不同模式下的光场分布及其受光纤参数影响的分析结果。
139 4
【光波电子学】基于MATLAB的多模光纤模场分布的仿真分析
|
3月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
4月前
|
算法 测试技术 SoC
基于直流潮流的IEEE30电力系统停电分布及自组织临界性分析matlab仿真
本研究提出一种基于直流潮流的算法来分析电力系统的停电分布及自组织临界性。算法迭代更新参数并模拟线路随机断开,运用粒子群优化计算关键值,并评估线路接近容量极限的概率。通过改变参数β和μ,分析不同线路可靠性和容量增加方式下的停电分布,并探索系统趋向临界状态的过程及停电概率分布。该方法基于IEEE30测试系统,利用MATLAB2022a实现,简化处理有功功率流动,适用于评估电力系统稳定性及预防大规模停电事故。
|
4月前
|
算法
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。
|
4月前
|
算法
基于matlab的风力发电系统建模与详细性能仿真分析
本研究介绍风力发电原理与系统模型,使用MATLAB 2022a进行性能仿真。风力通过风轮转化为电能,涉及贝努利定理及叶素理论。仿真展示了风速与输出功率间的关系,包括风电利用系数、切入切出控制与MPPT控制效果。当风速超过25m/s时,系统自动停机保护设备。MPPT算法确保了在变化风速下获得最大功率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码