[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](一)

简介: 笔记

一、前言


 本想着一篇博文直接写完基于PyTorch的深度学习实战,可写着写着发现字数都上万了。考虑到读者可能花了大力气对这么一篇博文看到失去了对PyTorch神经网络的耐心,同时也为了我个人对文章排版的整理,还是分成了分卷阅读。

 这里贴一下上篇博文:

[深度学习实战]基于PyTorch的深度学习实战(上)[变量、求导、损失函数、优化器]


二、线性回归


 线性回归也叫 regression,它是一个比较简单的模拟线性方程式的模型。线性方程式我们应该都学过吧,就是类似这样:

 Y=wX+b

 其中 w 是系数,b 是位移,它是一条笔直的斜线。

1.png

 那么我们假设给定一条模拟直线的点,每个点偏移这条直线很小的范围,我们要用到随机函数来模拟这个随机的偏移。

 首先可以定义一个随机种子,随机种子基本不影响随机数的值,也可以不定义随机种子。随机数值在 0~1 之间。

 例如:torch.manual_seed(1),设置随机种子为 1。

size=10
0.2*torch.rand(size)

 这里我们不打算使用 pytorch 的随机函数,毕竟 numpy 中已经提供了随机函数,我们的数据是生成 200 个 X 和 Y,模拟参数 w 为 0.5。

 代码:

import numpy as np
from numpy import random
import matplotlib.pyplot as plt
X = np.linspace(-1, 1, 200)
Y = 0.5 * X + 0.2* np.random.normal(0, 0.05, (200, ))
plt.scatter(X,Y)
plt.show()
#将X,Y转成200 batch大小,1维度的数据
X=Variable(torch.Tensor(X.reshape(200,1)))
Y=Variable(torch.Tensor(Y.reshape(200,1)))

2.png

 图形:3.png

 注意:这里要将输入数据转换成 (batch_size,dim) 格式的数据,添加一个批次的维度。

 现在的任务是给定这些散列点 (x,y) 对,模拟出这条直线来。这是一个简单的线性模型,我们先用一个简单的 1→1 的 Linear 层试试看。

 示例代码:


# 神经网络结构
model = torch.nn.Sequential(
torch.nn.Linear(1, 1),
)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
loss_function = torch.nn.MSELoss()


2.1 训练代码

for i in range(300):
prediction = model(X)
loss = loss_function(prediction, Y)
optimizer.zero_grad()
loss.backward()
optimizer.step()


2.2 绘图部分代码

plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('model')
plt.scatter(X.data.numpy(), Y.data.numpy())
plt.plot(X.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()


 最后的显示结果如图所示,红色是模拟出来的回归曲线:

4.png

2.3 numpy 数组的保存和导入代码

np.save("pred.npy",prediction.data.numpy())
pred= numpy.load("pred.npy")


2.4 完整代码

import numpy as np
from numpy import random
import matplotlib.pyplot as plt
import torch
from torch.autograd import Variable
X = np.linspace(-1, 1, 200)
Y = 0.5 * X + 0.2* np.random.normal(0, 0.05, (200, ))
X=Variable(torch.Tensor(X.reshape(200,1)))
Y=Variable(torch.Tensor(Y.reshape(200,1)))
print(X)
model = torch.nn.Sequential(
torch.nn.Linear(1, 1)
)
optimizer = torch.optim.SGD(model.parameters(), lr=0.5)
loss_function = torch.nn.MSELoss()
for i in range(300):
prediction = model(X)
loss = loss_function(prediction, Y)
print("loss:",loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(prediction.data.numpy())
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('model')
plt.scatter(X.data.numpy(), Y.data.numpy())
plt.plot(X.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()


三、numpy矩阵的保存


import numpy as np
a=np.array(2)
np.save("nm.npy",a)
a = np.load("nm. npy ")


 其中 np 是 import numpy as np 的 np。a 是对应的 numpy 数组,"nm. npy"是文件名称。


四、模型的保存和导入


 每次定义和训练一个模型都要花费很长的时间,我们当然希望有一种方式可以将训练好的模型和参数保存下来,下一次使用的时候直接导入模型和参数,就跟一个已经训练好的神经网络模型一样。幸运的是,pytorch 提供了保存和导入方法。


4.1 保存模型

# 保存整个神经网络的结构和模型参数
torch.save(mymodel, 'mymodel.pkl')
# 只保存神经网络的模型参数
torch.save(mymodel.state_dict(), 'mymodel_params.pkl')


4.2 导入模型

mymodel = torch.load('mymodel.pkl')


五、卷积层


 卷积层是用一个固定大小的矩形区去席卷原始数据,将原始数据分成一个个和卷积核大小相同的小块,然后将这些小块和卷积核相乘输出一个卷积值(注意:这里是一个单独的值,不再是矩阵了)。

 卷积的本质就是用卷积核的参数来提取原始数据的特征,通过矩阵点乘的运算,提取出和卷积核特征一致的值,如果卷积层有多个卷积核,则神经网络会自动学习卷积核的参数值,使得每个卷积核代表一个特征。

 这里我们拿最常用的 conv2d 和 conv1d 举例说明卷积过程的计算。


5.1 Conv2d

 conv2d 是二维度卷积,对数据在宽度和高度两个维度上进行卷积。


5.1.1 函数定义

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation


5.1.2 参数说明

 input:输入的Tensor数据,格式为 (batch,channels,H,W),四维数组,第一维度是样本数量,第二维度是通道数或者记录数,三、四维度是高度和宽度。

 weight:卷积核权重,也就是卷积核本身,是一个四维度数组,(out_channels, in_channels/groups, kH, kW)。 Out_channels 是卷积核输出层的神经元个数,也就是这层有多少个卷积核;==in_channels ==是输入通道数,kH 和 kW 是卷积核的高度和宽度。

 bias:位移参数,可选项,一般不用管。

 stride:滑动窗口,默认为 1,指每次卷积对原数据滑动 1 个单元格。

 padding:是否对输入数据填充 0。Padding 可以将输入数据的区域改造成卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过 padding 参数指定填充区域的高度和宽度,默认 0(就是填充区域为0,不填充的意思)。

 dilation:卷积核之间的空格,默认1。

 groups:将输入数据分组,通常不用管这个参数,没有太大意义。


5.1.3 测试代码

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
print("conv2d sample")
a=torch.ones(4,4)
x = Variable(torch.Tensor(a))
x=x.view(1,1,4,4)
print("x variable:", x)
b=torch.ones(2,2)
b[0,0]=0.1
b[0,1]=0.2
b[1,0]=0.3
b[1,1]=0.4
weights = Variable(b)
weights=weights.view(1,1,2,2)
print ("weights:",weights)
y=F.conv2d(x, weights, padding=0)
print ("y:",y)


5.1.4 最终结果

5.png

 我们看看它是怎么计算的:

 (1) 原始数据大小是1 * 1 * 4 * 4,1 * 1我们忽略掉,就是一个样本,每个样本一个通道的意思。4 * 4说明每个通道的数据是4 * 4大小的。而卷积核的大小是2 * 2。最后的卷积结果是3 * 3。

6.png


 A. 第一步,卷积核与原始数据第一个数据做卷积乘法。图中示例部分的算法如下:

 0.1 * 1+0.2 * 1+0.3 * 1+0.4 * 1=1.0。

 B. 中间步骤,按顺序移动卷积核,并和目标区域做矩阵乘法。得到这一步的卷积值,作为结果矩阵的一个元素,图中示例部分的算法如下:

 0.1 * 1+0.2 * 1+0.3 * 1+0.4 * 1=1.0

 C. 最后一步,用卷积核卷积 input[2:4,2:4],最后共 4 个元素。图中示例部分的算法和上面一样,最后的值也是 1。

 因为原始数据都是 1,所有最后卷积出来的结果才是相同的,否则的话是不同的。最终卷积的结果就是:

7.png

相关文章
|
11天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
32 7
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
157 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
2月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
136 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
1月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
26 1
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
69 10
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
50 5
|
1月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
85 4
|
1月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
38 1
|
1月前
|
机器学习/深度学习 Python
深度学习笔记(六):如何运用梯度下降法来解决线性回归问题
这篇文章介绍了如何使用梯度下降法解决线性回归问题,包括梯度下降法的原理、线性回归的基本概念和具体的Python代码实现。
63 0
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器