NumPy 教程 之 NumPy 矩阵库(Matrix) 4

简介: 矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或数学表达式。

NumPy 教程 之 NumPy 矩阵库(Matrix) 4

NumPy 矩阵库(Matrix)

NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。

一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。

矩阵里的元素可以是数字、符号或数学式。

转置矩阵

NumPy 中除了可以使用 numpy.transpose 函数来对换数组的维度,还可以使用 T 属性。。

例如有个 m 行 n 列的矩阵,使用 t() 函数就能转换为 n 行 m 列的矩阵。

numpy.matlib.ones()

numpy.matlib.ones()函数创建一个以 1 填充的矩阵。

实例

import numpy.matlib
import numpy as np

print (np.matlib.ones((2,2)))

输出结果为:

[[1. 1.]
[1. 1.]]

目录
相关文章
|
26天前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
30 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
53 0
|
27天前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
52 10
|
27天前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
78 4
|
2月前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
36 11
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
31 11
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。
37 12
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 3
使用Python的绘图库Matplotlib与NumPy结合,创建有效的MatLab开源替代方案。它还支持与PyQt和wxPython等图形工具包搭配使用。通过向`plot()`函数添加特定格式字符串,可以展示离散值而非线性图。提供了多种线型和标记选项,例如实线`-`、虚线`--`、点标记`.`等,以及颜色缩写如蓝色`b`、绿色`g`等。示例代码展示了如何用圆点表示数据点而非线条。
36 10
|
2月前
|
Python
NumPy 教程 之 NumPy Matplotlib 5
Matplotlib 是 Python 的绘图库,配合 NumPy 可作为 MatLab 的开源替代方案,并能与 PyQt 和 wxPython 等图形工具包共同使用。本教程重点讲解 `bar()` 函数用于生成条形图的方法,并通过实例展示了如何创建并显示两组数据的条形图。
29 7
|
2月前
|
存储 Python
NumPy 教程 之 NumPy IO 1
NumPy IO 教程介绍了如何使用 NumPy 读写文本及二进制数据。教程覆盖了 `.npy` 和 `.npz` 格式的文件操作,其中 `save()` 和 `load()` 函数用于单个数组的存取,而 `savez()` 则可以保存多个数组。文本文件处理则由 `loadtxt()` 和 `savetxt()` 完成。通过示例展示了 `numpy.save()` 函数的具体用法,并解释了其参数含义,如文件名、数组对象以及序列化选项等。
39 10