基于高分辨率时频分析的单通道地震数据自动噪声衰减方法(Matlab代码实现)

简介: 基于高分辨率时频分析的单通道地震数据自动噪声衰减方法(Matlab代码实现)

💥1 概述

记录的地震信号常常被噪声破坏。本文使用了一种基于高分辨率时频分析的单通道地震数据自动噪声衰减方法。同步压缩是一种时频重新分配方法,旨在锐化时频图像。噪声可以从信号中区分出来,并且在这个重新分配的域中更容易衰减。使用一般交叉验证方法来估计阈值水平,该方法不依赖关于噪声水平的任何先验知识。通过增加基于峰度测量的预处理步骤和基于自适应硬阈值的后处理步骤,提高了阈值处理的效率。所提出的算法可以衰减噪声(白色或彩色)并保持信号,或者去除信号并保持噪声。因此,它既可以用于正常的去噪应用,也可以用于环境噪声研究中的预处理。在合成、微震和地震记录上测试了所提出方法的性能。


这是GCV方法的一种反向算法,可以去除信号并保持背景噪声。


📚2 运行结果

 

🎉3 参考文献

[1]王姣,李振春,王德营.基于CEEMD的地震数据小波阈值去噪方法研究[J].石油物探,2014,53(02):164-172.

👨‍💻4 Matlab代码

主函数部分代码:

clear all
close all
% Parameters for Calculate the wavelet transform -
opt.type = 'morlet';         % Type od the mother wavelet used for CWT calculation: 'morlet' 'shannon' 'mhat' 'hhat'
opt.padtype = 'symmetric';   % padded via symmetrization
opt.rpadded = 1;
opt.nv = 16;                 % Number of voices. You can sellect 8,16,32,64.
% Guassian correction factor. This corrects the uncertainties for the 
% estimation of the guassianity and amplifies the pre-processing effects.
% It should be selected highh enough to remove the strong noises outside
% of the signal's frequency band but not too high to remove signal's energy. 
% value of 1.0 means no correction. 
opt.gc=3;
%load('syntNoisy3_z.mat');
% data.noisy = syntNoisy3_z;
% data.t = linspace(0,(100),length(data.noisy));
% data.dt = 0.01;
% Read the noisy data 
[data.t,data.noisy,data.hdr] = read_sac('XD.A01..BHZ.064.SAC');
data.dt = data.hdr.times.delta        % delta
d1 = data.noisy;
% Since thecurrent version of the code can not handel overlapping winows we
% implement the algorithm by repeating the process using two windows of
% different sizes (one larger than the largest event in the waveform and one
% smaller window which its lenght is not a multiplication of the larger window size)
% however this makes the code slower but so far this is the easiest
% soloution
% processing long duration data is done in moving window fasion
opt.wsiz = 500; % wondow size (sec), needs to be longer than the length of typical events that you have in your data
tic
dn =gcvThreshR(data,opt);
toc
data.noisy = dn.xgcv;
opt.wsiz = 55; % wondow size (sec), needs to be longer than the length of typical events that you have in your data
tic
dn =gcvThreshR(data,opt);
toc
figure, 
subplot(2,1,1),
plot(d1, 'b');
grid on
title('Noisy Record ','Rotation',0,'FontSize',14);
xlabel({'Sample'},'FontSize',12); 
ylabel('Amplitude (count)','FontSize',12)
相关文章
|
1月前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
2月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
215 13
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
83 5
|
2月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
4月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
78 0
|
5月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
327 19
|
5月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
6月前
|
算法
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。

热门文章

最新文章