【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)

简介: 【无人机】四轴无人机的轨迹进行可视化和动画处理(Matlab代码实现)

1 概述

随着传感器检测技术、智能控制技术和材料技术的快速发展,四轴无人机及其配套系统的发展越来越成熟。无人机遥感系统具有成本低、易维护、效率高、时效性强及对环境要求低等特点。

2 运行结果

部分代码:

function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh 
%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base 
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base 
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree 
to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter 
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ; 
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors 
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);
%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 for i = 1:length(x)
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end


function animation = drone_Animation(x,y,z,roll,pitch,yaw)
% This Animation code is for QuadCopter. Written by Jitendra Singh
%% Define design parameters
D2R = pi/180;
R2D = 180/pi;
b   = 0.6;   % the length of total square cover by whole body of quadcopter in meter
a   = b/3;   % the legth of small square base of quadcopter(b/4)
H   = 0.06;  % hight of drone in Z direction (4cm)
H_m = H+H/2; % hight of motor in z direction (5 cm)
r_p = b/4;   % radius of propeller
%% Conversions
ro = 45*D2R;                   % angle by which rotate the base of quadcopter
Ri = [cos(ro) -sin(ro) 0;
      sin(ro) cos(ro)  0;
       0       0       1];     % rotation matrix to rotate the coordinates of base
base_co = [-a/2  a/2 a/2 -a/2; % Coordinates of Base
           -a/2 -a/2 a/2 a/2;
             0    0   0   0];
base = Ri*base_co;             % rotate base Coordinates by 45 degree
to = linspace(0, 2*pi);
xp = r_p*cos(to);
yp = r_p*sin(to);
zp = zeros(1,length(to));
%% Define Figure plot
 fig1 = figure('pos', [0 50 800 600]);
 hg   = gca;
 view(68,53);
 grid on;
 axis equal;
 xlim([-1.5 1.5]); ylim([-1.5 1.5]); zlim([0 3.5]);
 title('(JITENDRA) Drone Animation')
 xlabel('X[m]');
 ylabel('Y[m]');
 zlabel('Z[m]');
 hold(gca, 'on');
%% Design Different parts
% design the base square
 drone(1) = patch([base(1,:)],[base(2,:)],[base(3,:)],'r');
 drone(2) = patch([base(1,:)],[base(2,:)],[base(3,:)+H],'r');
 alpha(drone(1:2),0.7);
% design 2 parpendiculer legs of quadcopter
 [xcylinder ycylinder zcylinder] = cylinder([H/2 H/2]);
 drone(3) =  surface(b*zcylinder-b/2,ycylinder,xcylinder+H/2,'facecolor','b');
 drone(4) =  surface(ycylinder,b*zcylinder-b/2,xcylinder+H/2,'facecolor','b') ;
 alpha(drone(3:4),0.6);
% design 4 cylindrical motors
 drone(5) = surface(xcylinder+b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(6) = surface(xcylinder-b/2,ycylinder,H_m*zcylinder+H/2,'facecolor','r');
 drone(7) = surface(xcylinder,ycylinder+b/2,H_m*zcylinder+H/2,'facecolor','r');
 drone(8) = surface(xcylinder,ycylinder-b/2,H_m*zcylinder+H/2,'facecolor','r');
 alpha(drone(5:8),0.7);
% design 4 propellers
 drone(9)  = patch(xp+b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(10) = patch(xp-b/2,yp,zp+(H_m+H/2),'c','LineWidth',0.5);
 drone(11) = patch(xp,yp+b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 drone(12) = patch(xp,yp-b/2,zp+(H_m+H/2),'p','LineWidth',0.5);
 alpha(drone(9:12),0.3);
%% create a group object and parent surface
  combinedobject = hgtransform('parent',hg );
  set(drone,'parent',combinedobject)
%  drawnow
 for i = 1:length(x)
     ba = plot3(x(1:i),y(1:i),z(1:i), 'b:','LineWidth',1.5);
     translation = makehgtform('translate',...
                               [x(i) y(i) z(i)]);
     %set(combinedobject, 'matrix',translation);
     rotation1 = makehgtform('xrotate',(pi/180)*(roll(i)));
     rotation2 = makehgtform('yrotate',(pi/180)*(pitch(i)));
     rotation3 = makehgtform('zrotate',yaw(i));
     %scaling = makehgtform('scale',1-i/20);
     set(combinedobject,'matrix',...
          translation*rotation3*rotation2*rotation1);
      %movieVector(i) =  getframe(fig1);
        %delete(b);
     drawnow
   % pause(0.2);
 end


3 参考文献

部分理论引用网络文献,如有侵权请联系删除。

[1]李想,李阳.四轴无人机在林业管理中的应用[J].广西林业科学,2020,49(02):296-299.DOI:10.19692/j.cnki.gfs.2020.02.028.

4 Matlab完整代码实现


相关文章
|
5天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
5天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
5天前
|
算法 调度
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
面向配电网韧性提升的移动储能预布局与动态调度策略(matlab代码)
|
5天前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
5天前
|
运维 算法
基于改进遗传算法的配电网故障定位(matlab代码)
基于改进遗传算法的配电网故障定位(matlab代码)
|
5天前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
5天前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
5天前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
|
5天前
|
算法 调度 SoC
电动汽车充放电V2G模型(Matlab代码)
电动汽车充放电V2G模型(Matlab代码)

热门文章

最新文章